©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdo- main/Zero/Zero/1.0/)适用于本文提供的数据,除非在数据信用额度中另有说明。
1科罗拉多大学Anschutz大学医学校园的生物医学信息学系,CO 80045; 2基因组学和分子遗传学本科课程,密歇根州立大学,东兰辛,密歇根州48824; 3密歇根州立大学,密歇根州立大学微生物与分子遗传学系病理生物学和诊断研究系,密歇根州48824; 4计算机科学本科课程,密歇根州立大学,东兰辛,密歇根州48824; 5密歇根州立大学的生物化学和生物技术本科课程,东兰辛,密歇根州48824; 6科罗拉多大学Anschutz大学医学校园的6学院,Aurora,CO 80045; 7密歇根州立大学,密歇根州立大学,密歇根州东兰辛,密歇根州48824。
血清电泳(SPEP)是一种用于分析血液中最重要蛋白质的分布的方法。主要的临床问题是存在抗体(M蛋白/副蛋白)的单克隆分数,这对于诊断和下血液学疾病(例如多发性骨髓瘤)至关重要。最近的研究表明,可以通过例如检查蛋白质聚糖模式来跟踪肿瘤手术,可以使用机器学习来评估蛋白质电泳。在这项研究中,我们比较了26种不同的决策树算法,通过使用来自血清蛋白质毛细血管电泳的数值数据,以鉴定人血清中M蛋白的存在。对于数据的自动检测和聚类,我们使用了一个由67,073个样本组成的匿名数据集。我们发现了五种具有较高能力检测M蛋白质的方法:额外的树(ET),随机拟合(RF),直方机分级增强回收期(HGBR),轻梯度增强方法(LGBM)和极端梯度增强(XGB)。此外,我们实施了一种游戏方法来披露数据集中的哪些功能,这些功能表明了由此产生的M蛋白诊断。结果验证了伽马球蛋白的馏分和β球蛋白分数的一部分是电泳分析的最重要特征,从而增强了我们方法的可靠性。最后,我们测试了分类的M蛋白质同种型的算法,其中ET和XGB在测试的五种算法中表现出最佳性能。我们的结果表明,血清毛细管电泳与决策树算法相结合,在应用M蛋白的快速,准确鉴定方面具有巨大的潜力。此外,这些方法将适用于各种血液分析,例如血红蛋白病,表明诊断范围广泛。但是,对于M蛋白质同种型分类,将机器学习解决方案与毛细血管电泳的数值数据与凝胶电泳图像数据相结合是最有利的。
70 kDa (EXO70) 蛋白的胞外囊泡成分是胞外囊泡复合物的组成部分,与胞吐过程中的囊泡束缚有关。抗霉菌位点 O (MLO) 蛋白是植物特异性钙通道,一些 MLO 同工型可促进真菌白粉病的致病。我们在此检测到拟南芥 exo70H4 和 mlo2 mlo6 mlo12 三重突变体植物在叶毛状体次生细胞壁的生物发生方面存在意外的表型重叠。生化和傅里叶变换红外光谱分析证实了这些突变体中毛状体细胞壁组成的缺陷。表达荧光团标记的 EXO70H4 和 MLO 的转基因系表现出这些蛋白质的广泛共定位。此外,mCherry-EXO70H4 错误定位在 mlo 三重突变体的毛状体中,反之亦然,MLO6-GFP 错误定位在 exo70H4 突变体的毛状体中。GFP 标记的 PMR4 胼胝体合酶(EXO70H4 依赖性胞吐的已知货物)的表达表明,mlo 三重突变体植物的毛状体中 GFP-PMR4 的细胞壁输送减少。植物和酵母细胞中的体内蛋白质-蛋白质相互作用测定揭示了 EXO70.2 亚家族成员和 MLO 蛋白之间的异构体优先相互作用。最后,exo70H4 和 mlo6 突变体结合时表现出协同增强的对白粉病攻击的抗性。总之,我们的数据表明 EXO70 和 MLO 蛋白在调节毛状体细胞壁生物合成和白粉病易感性方面存在异构体特异性相互作用。
使用外部刺激来操纵细胞功能的能力是研究复杂生物学现象的有力策略。调节细胞环境功能的一种方法是分裂蛋白。在这种方法中,生物活性蛋白或酶是碎片的,因此仅在特定刺激下重新组装。尽管有许多工具可诱导这些系统,但自然已经提供了扩展分裂蛋白质工具箱的其他机制。在这里,我们展示了一种使用磁刺激来重构分裂蛋白的新方法。我们发现电磁感知基因(EPG)因磁场刺激而改变构象。通过将某个蛋白质的分裂片段融合到EPG的两个末端,可以将片段重新组合成由于构象变化而引起的磁刺激的功能蛋白。我们用三种独立的分裂蛋白显示了这种作用:纳米核,APEX2和单纯疱疹病毒型1胸苷激酶。我们的结果首次表明,只有用磁场才能实现分裂蛋白的重建。我们预计这项研究将是未来磁性诱导的分裂蛋白设计的起点,用于细胞扰动和操纵。通过这项技术,我们可以帮助扩展分裂蛋白质平台的工具箱,并可以更好地阐明复杂的生物系统。
真核生物携带三种类型的结构性维持(SMC)蛋白复合物,冷凝蛋白,粘着素和SMC5/6,它们是ATP依赖性运动蛋白,通过DNA环挤出重塑基因组。SMCS调制DNA超螺旋,但仍未完全了解如何实现这一目标。在这里,我们提出了一个单分子磁性镊子测定法,该测定法直接测量每个回路 - 分解步骤中单个SMC诱导的扭曲程度。我们证明,所有三个SMC复合物都将相同的较大的负扭曲(即,链接数变化δk k k k占-0.6在每个回路 - 排除步骤中)中的挤压循环,与步长大小无关。使用ATP-Hydrolsyssys突变体和不可用的ATP类似物,我们发现ATP结合是ATPase循环期间的扭曲诱导事件,它与产生力的环路 - 分解步骤相吻合。所有三种真核SMC蛋白诱导相同数量的扭曲表明这些SMC复合物中常见的DNA环境解开机制这一事实。
关于调查,我们对2023年2月的1,551个美国消费者的代表性样本进行了调查。要获得调查的资格,受访者必须是他们家庭的主要购物者。受访者的标签阅读行为进行了筛选,有70%的受访者证明他们积极阅读标签。他们被问及他们对单个成分类型的认识,报告的尝试新颖成分的经验以及尝试新颖成分的开放性和障碍。还询问了他们的价格看法和愿意为具有新颖成分的产品支付的意愿,以及产品描述和新颖的类别名称如何引起它们的共鸣。
蛋白质的翻译后修饰(PTM)在其功能和可行性中起着至关重要的作用。这些修饰会影响蛋白质折叠,信号传导,蛋白质 - 蛋白质相互作用,酶活性,结合亲和力,聚集,降解等等。迄今为止,已经描述了超过400种PTM,代表了远远超出遗传编码氨基酸的化学多样性。这种修饰对蛋白质的成功设计构成了挑战,但也代表了使蛋白质工程工具箱多样化的主要机会。为此,我们首先训练了人工神经网络(ANN),以预测十八种最丰富的PTM,包括蛋白质糖基化,磷酸化,甲基化和脱氨酸。在第二步中,这些模型是在计算蛋白建模套件Rosetta中实现的,该模型允许与现有协议的灵活组合来建模修饰的位点并了解它们对蛋白质稳定性和功能的影响。最后,我们开发了一种新的设计协议,该协议可以最大化或最大程度地减少修改特定站点的预先指定的概率。我们发现,基于ANN预测和基于结构的设计的这种组合可以使现有和引入新颖PTM的修改。我们工作的潜在应用包括但并不包括对表位的聚糖掩盖,从而加强了通过phos-odylation加强蛋白质 - 蛋白质相互作用,还可以保护蛋白质免受脱氨基责任的影响。我们的作品为Rosetta的蛋白质工程工具箱添加了新颖的工具,该工具允许PTM的理性设计。这些应用对于设计新蛋白质治疗剂的设计尤其重要,在这种蛋白质疗法的设计中,PTM可以彻底改变蛋白质的治疗特性。
经过攻击后(第二剂疫苗接种后两周和两个月),与未接种疫苗的对照组相比,接种疫苗的马匹的急性临床症状有所减少。在接种疫苗的动物中,约 43%(28 匹小马中的 12 匹)没有发热(发热定义为三天中有两天体温达到或超过 39°C)。与未接种疫苗的动物相比,接种疫苗的动物发热天数明显较少。 - 36%(28人中的10人)没有出现咳嗽症状。 - 43%(28匹小马中的12匹)没有出现吞咽困难的迹象。 - 43%(28 人中的 12 人)在毒性测试后没有表现出明显抑郁的迹象(食欲不振、行为明显改变)。
上皮细胞上的顶纤毛通过从呼吸道气道中推动病原体和颗粒物来捍卫肺。纤毛细胞产生的ATP,可以通过将顶部膜下方的线粒体密度分组为纤毛跳动。但是,这种有效的定位是付出代价的,因为在氧化苯二元化过程中泄漏的电子与分子氧反应形成超氧化物,因此,线粒体的簇产生了用于氧化生产的热点。相对较高的氧气浓度上覆的气道上皮进一步增强了产生超氧化物的风险。因此,气道纤毛细胞面临产生有害氧化剂水平的独特挑战。令人惊讶的是,高度纤毛上皮产生的活性氧(ROS)比几乎没有纤毛细胞的上皮含量较少。与其他空气细胞类型相比,纤毛细胞表达高水平的线粒体解偶联蛋白UCP2和UCP5。这些蛋白质降低了线粒体质子示数力,从而降低了ROS的产生。结果,脂质过氧化是氧损伤的标志物,减少了。然而,线粒体解偶联蛋白的确切价格可以减少氧化剂的产生;它们减少了产生ATP的线粒体呼吸的比例。这些发现表明纤毛细胞牺牲线粒体效率,以换取安全氧化的安全性。使用解偶联蛋白来防止氧化剂产生,而不是仅仅依靠抗氧化剂来降低后生产氧化剂水平,可能为靶向靶向强烈的ROS产生的局部区域提供了优势。