真核生物及其功能和形态多样性的兴起。生物学家已经作为无数生物学过程的模型生物服务了数十年,这是由纤毛四心虫(Ciliate Tetrahymena)示例的,这已经引起了两个诺贝尔奖获奖的发现[3](Box 1)。尽管它们的重要性,但我们对这些生物体的了解受到稳定实验室文化数量有限的影响。这是结合通常较大的基因组,因此很难从环境测序中组装出来,它限制了我们获得高质量基因组序列的能力。因此,原生生物目前代表了全球生物群体中未开发的基因组信息的主要库。除了能够获得其基因组,将生物体带入文化还将其生态学和生理学的研究带入了一个全新的水平,这并不奇怪,这将有助于令人兴奋的发现。
helmholtz极地和海洋研究中心的Alfred-Wegener-Institute,Am Handelshafen,12,27570 Bremerhaven,德国B德国B海洋环境化学与生物学研究所(ICBM),Oldenburg大学,旧金堡大学,Schleusstraße1,26382 Wilhelmshaven,compoly compology of Schleussenstra。 FUENTUENUEVA S/N 1,18071 GRANADA,西班牙d生态与动物生物学系,Vigo大学,校园Lagoas Marcosende S/N,36310西班牙Vigo,E西班牙E生态,环境和植物科学系,斯多克大学,斯德哥尔摩大学,Svante Arrhenius v. ag ag20a,Swedig swedig switde v. ag ag 206 91 specten-swud f。在Freiburg,Fahnenbergplatz,79104 Freiburg I.Br.
是一个用于固体有机废物利用的江苏省密钥实验室,中国有机肥料的关键实验室,江苏固体有机废物的合作创新中心,资源储蓄肥料的教育部工程中心,省资源的肥料中心6700 AA,荷兰C学系,真正的JardínBot'anico-csic,马德里,西班牙,草药改善的国家主要实验室和草原农业生态系统,兰州生态学院,兰州兰州大学,兰州,兰州,兰州,甘努省,甘苏省,甘苏省,甘苏省,gepole of caul o ecologe e Ecologe of Ecology of Ecologe of Ecology of Ecologe of Ecology of Ecology of Ecologe of Ecologe of Ecologe of Ecologa宾夕法尼亚州大学公园,宾夕法尼亚大学公园,宾夕法尼亚州16802,植物科学与哈克生命科学研究院,宾夕法尼亚州立大学,宾夕法尼亚州立大学,美国宾夕法尼亚州立大学公园,美国宾夕法尼亚州大学公园,美国生态学和生物多样性小组,宾夕法尼亚州立大学公园,宾夕法尼亚州立大学,宾夕法尼亚州立大学,宾夕法尼亚州生命科学研究所,宾夕法尼亚州16802 3584 CH,荷兰
沿海水域的浮游微生物构成了食物网和生物地球化学循环的基础。波罗的海地区具有明显的环境梯度,是典型的沿海环境。然而,迄今为止,对这些环境梯度的微生物多样性评估既缺乏分类范围,也缺乏空间和时间尺度的整合。在这里,我们使用 DNA 宏条形码分析了 398 个样本的原生生物和细菌多样性,这些样本与波罗的海和卡特加特海峡-斯卡格拉克海峡的国家监测同步。我们发现,与其他环境因素不同,盐度对细菌群落组成的影响大于对原生生物群落组成的影响。同样,贝叶斯模型表明,在较低(<9 PSU)和较高(>15 PSU)的咸水盐度中,细菌谱系出现的可能性都小于原生生物。尽管如此,原生生物的 α 多样性还是随着盐度的增加而增加。细菌 α 多样性的变化主要是季节性的,与冬季通过垂直混合引入深水生物群有关。我们认为原生生物在生态上对盐度不太敏感,因为区室化使它们能够将基本代谢过程与细胞膜分离。此外,细菌进一步和更频繁地扩散可能会阻碍局部适应。最终,基于 DNA 的环境监测扩展了我们对微生物多样性模式和潜在因素的理解。40
植物性能受到根际细菌的影响。这些细菌受根渗出液以及捕食者,尤其是生物的自上而下控制的自下而上控制。生物刺激促进植物生长的微生物,从而改善了植物的性能。然而,了解确定这种三方植物 - 细菌 - 植物相互作用中互连的机制仍然有限。我们进行了实验,研究了掠食性捕食者cercomonas lenta对根际细菌群落的影响,特别是在cercomonas lenta与关键细菌分类群之间的相互作用以及关键细菌分类中的相互作用。我们追踪了根际细菌群落组成,潜在的微生物相互作用和植物性能。我们发现cercomonas lenta接种导致植物生物量平均增加92.0%。这种作用与植物生长促进性根瘤菌(假单胞菌和鞘氨拟补组织)的增加以及细菌(Chitinophaga)的降低有关,对植物生长促进性根瘤菌产生负面影响。我们还发现了植物生长促进根瘤菌联盟内生物膜形成中合作增强的证据。cercomonas lenta通过促进其在根际中促进其合作生物膜形成,从而增强了植物生长促进性根瘤菌联盟的定殖,从而导致磷酸盐溶解化增加14.5%,从而使植物生长受益。综上所述,我们提供了机械洞察力,即掠食性捕食者cercomonas lenta如何影响植物的生长,即通过刺激植物有益的微生物并增强其互动活性,例如生物膜的形成。掠食性生物可能代表有希望的生物学剂,可以通过促进植物与其微生物组之间的相互作用来促进可持续的农业实践。
摘要 - 全球变暖,以使人们更加潮流,这使人们像人类一样,像在欧洲的othertres fresuter一样。增加了Gretres hous forcct forct to to Global变暖和潮流。实际上,它的eftcct(其卢比)并不是一件坏事。gretres hous forcct允许Earth保持温暖,以为人类和创造物生存。氯氟化合物(CFCS)在大气中耗尽了大气的臭氧,并允许UltravioL射线吸收earthth。逐渐增加全球温度正在发生较大的变化,其中包括极地冰盖的效果,在海上列出。在所有这些事物上,整个生态系统几乎都会产生。减少碳和格里的房屋气氛,这是为时已晚,这是唯一的回答。节省entergy和deving的替代品会源代表,可以将全球变暖的全球变暖降至最低。人类,像特定的人一样,将在改变世界上做出贡献。我们每个人都可以通过使用温室气体产生充满活力,行驶,选择效率的汽车和设备供电的饮料和热人等来做出对它的贡献。缓解个人,工业和政府可能会减少全球变暖的预期。比nevRer ,这是一个呼吁我们拯救欧洲的呼吁,并在ordresr中保存我们的sellv,以使presstt和the the of to protist to pros to pros to pros the -thelet and to to pros and the oferth and the to pros and themnt and。 全球变暖不仅在变暖,而且是全球警告。,这是一个呼吁我们拯救欧洲的呼吁,并在ordresr中保存我们的sellv,以使presstt和the the of to protist to pros to pros to pros the -thelet and to to pros and the oferth and the to pros and themnt and。全球变暖不仅在变暖,而且是全球警告。
微生物真核生物(又称生物学家)以其在不同生态系统中的营养循环中的重要作用而闻名。然而,原始人相关的微生物组的组成和功能在很大程度上仍然难以捉摸。在这里,我们采用了与培养无关的单细胞分离和基因组分辨的宏基因组学,以详细的见解对目前从不同环境中分离出的目前无法培养的纤毛和Amoebae的100多个未倍增的微生物组和病毒膜。我们的发现揭示了独特的微生物组组成,并暗示了复杂相互作用以及与细菌共生体和病毒关联的复杂网络。我们观察到纤毛和变形虫在微生物组和病毒蛋白组成方面存在明显的差异,突出了原生物 - 微生物相互作用的特异性。超过115个回收的微生物基因组与已知的真核生物的内共生体相关,其中包括多元化的众多成员,人力体,军团菌,衣原体,依赖性和250个以上的人与可能的宿主相关细菌属于phylylyscibac的细菌。我们还确定了属于多种病毒谱系的80多个巨型病毒,其中一些病毒在单细胞转录组中积极表达基因,这表明可能与采样的生物有关联。我们还揭示了广泛的其他病毒,这些病毒被预测会感染真核生物或宿主相关的细菌。我们的结果提供了进一步的证据,表明生物是复杂的微生物和病毒关联的介体,在生态网络中起着至关重要的作用。我们的样品中巨型病毒和多种微生物共生体的频繁同时出现表明多部分关联,尤其是在变形虫中。我们的研究提供了与鲜为人知的原生物谱系相关的微生物多样性的初步评估,并为对原生生态学及其在环境和人类健康中的作用有了更深入的理解铺平了道路。
lunula是一种单细胞生物化的恐龙。尽管在许多双重化的进化枝中都可以理解生物新蛋白质和荧光素酶合成的机理和基因,但在恐龙粉中,它仍然未知。我们利用了长时间和简短的读数,在这里介绍了P. Lunula转录组的从头大会。总共获得了9.75亿个过滤的配对读数,并将其组装成155,716个重叠群,该重叠群与功能上有功能上注释的普通成绩单相对应。该数据集对于提高我们对原生物学的理解并可以通过NCBI Bioproject(PRJNA727555)获得有价值。©2021作者。由Elsevier Inc.出版这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
euglena gracilis是一种单细胞的光养生者,是一种有前途的食物,饲料和生物燃料的材料。但是,该物种中有针对性的诱变方法的发展一直是长期的挑战。在当前的遗传操纵技术中,通过RNP的直接递送进行基因组编辑具有各种优势,包括时间效率,低细胞毒性,高效率和降低距离效应(Jeon等,2017)。在我们的方法,插入和/或缺失(INDEL)突变率为77.7%–90.1%的突变率中,通过在Eggsl2基因中的两个不同靶序列中进行了扩增子测序(Nomura等,2019)。因此,我们在大肠杆菌中开发的基于RNP的基因组编辑开辟了新的途径以揭示基因的功能。