由于人为气候变化,干旱的频率和严重程度正在增加,并且已经限制了世界许多地区的农作物系统生产力。在植物微生物组中,很少有微生物基团有可能有助于其在包括水的非生物压力事件下其宿主的锻炼和生产力。但是,考虑到多个共存的生物群体,微生物群落是复杂而综合的工作,以更好地了解整个微生物组如何对环境压力的反应。我们假设水应力将在玉米和甜菜的橄榄球中降低细菌,真菌和protistan微生物组组成以及王国间微生物相互作用的影响。,我们使用扩增子测序来对玉米和甜菜根刺激群中的细菌,真菌和protistan群落进行生长,并在炎症下生长并定义水。水定义
尿苷插入 /缺失(U-Indel)编辑Mito-Condrial mRNA,Protistan类Kine-toplastea独有的,生成规范和潜在的非生产性编辑事件。虽然分子机制和为U-Indel编辑提供所需信息的指南(G)RNA的作用有充分的了解,但对不限制其明显易错的性质的力鲜为人知。对GRNA的分析:mRNA对允许在给定线粒体转录的给定位置解剖编辑事件。一个完整的GRNA数据集,与包括非平均编辑转录物在内的完全表征的mRNA群体配对,将允许在整个小节转录组中全球进行此类分析。为了实现这一目标,我们组装了67个昆虫寄生虫Lep- tomonas pyrrhocoris的微量圆,每个微圆通常编码一个位于两个不同来源的两个相似单元之一中的一个GRNA。在相对较低的注释的grnas中,我们已经解剖了L. pyrrhocoris中的所有识别线粒体编辑事件,其菌株在各个微量圆形类别的丰富度上截然不同。我们的资产支持一个模型,其中许多编辑事件由有限的GRNA驱动,而自发的GRNA具有指导规范和非统计编辑的固有能力。
在过去的几十年中,全球自身免疫性疾病的流行迅速增长。越来越多的证据将肠道营养不良与各种自身免疫性疾病的发作联系起来。由于高吞吐量测序技术的显着进步,肠道微生物组研究的数量有所增加。但是,它们主要集中在细菌上,因此我们对人肠道微生物生态系统中真核微生物的作用和意义的理解仍然非常有限。在这里,我们选择了Graves疾病(GD)作为一种自身免疫性疾病模型,并研究了肠道多杀伤力(细菌,真菌和生物学家)从健康控制,患病和药物治疗的康复患者中的微生物群落。结果表明,GD中的生理变化增加了细菌社区组装的分散过程,并增加了真核社区组装的均匀选择过程。恢复的患者与健康对照组具有相似的细菌和原生动物,但没有真菌的社区组装过程。此外,与细菌相比,真核生物(真菌和生物学家)在肠道生态系统功能中起着更重要的作用。总体而言,这项研究简要了解了真核生物对人类肠道和免疫稳态的潜在贡献及其对治疗干预措施的潜在影响。
微生物水质对于人,动物和环境健康至关重要。存在微生物污染物,例如致病细菌,病毒,原生动物,真菌和相关的抗菌耐药性(AMR),可能会恶化水对变化的水平的安全性和质量,包括地表水,海洋水,地下水和饮用水等在某些严重的情况下,发生水传播的爆发,并可能导致重大的经济和社会损失,这突显了开发和应用快速,敏感和可靠的调查方法,以尽早发现水中的微生物污染物,以促进及时反应并采取措施快速控制和限制污染的健康影响。对微生物污染的快速可靠检测对于水质的有效管理和防止有害微生物危害的传播至关重要。此外,水污染物可以显着改变水体中的微生物群落,从而破坏水生生态系统的平衡。检测这种变化对于预防水生生态系统的降解至关重要,水生生态系统损害了生物多样性和自然维持基本的支持生命支持过程的能力。在世界范围内,分子方法正在经历不断的改进和进步,以更好地服务微生物水质的评估和监视。Sun等。 使用16S rRNA高吞吐量测序研究了被污染的城市湖泊中不同生态壁细菌的细菌结构。 通过应用16S和18S rRNA基因扩增子测序,Wu等。Sun等。使用16S rRNA高吞吐量测序研究了被污染的城市湖泊中不同生态壁细菌的细菌结构。通过应用16S和18S rRNA基因扩增子测序,Wu等。下一代测序(NGS)技术已越来越多地用于评估微生物群落的变化,以应对不同的环境压力/污染物,并可以详细了解如何适应各种微生物生态系统。这项研究揭示了不同壁ches中细菌群落的不同相互作用模式,并鉴定了生态壁chi在塑造对水污染的细菌反应中的重要作用。表征了喀斯特河中细菌和生物的组装,并探讨了丰富,稀有细菌和原生动物亚社区对所研究水中环境干扰的适应性。