了解空间辐射环境对于设计和选择用于空间应用的材料和部件至关重要。这种环境不仅以太阳的电磁辐射为特征,而且还以带电粒子为特征,带电粒子分为太阳风、太阳高能粒子 (SEP) 和银河宇宙射线 (GCR)。特别是对于材料工程和鉴定测试,需要从 keV 到 GeV 的粒子能量的微分和积分谱。到目前为止,已经有各种各样的模型可用,但很难保持概览。尽管欧洲空间标准化合作 (ECSS) 标准包括有关如何研究粒子辐射的说明,但它并未提供整体视图。本文将为那些需要全面概述的人提供支持,并提供有关质子辐射谱的全面信息,这些信息可能用于从任务分析到材料和组件设计以及鉴定测试等空间工程任务。检查了可公开访问的平台 OLTARIS、SPENVIS 和 OMERE,以获取可用的质子光谱。例如,考虑了第 23 个太阳周期的粒子辐射,该周期涵盖了 1996 年至 2008 年。可用模型的一个共同缺点是它们仅限于 MeV 范围。特别是当材料直接暴露在太空环境中时,低能粒子(特别是 keV 范围)会引起人们的高度关注,因为这些粒子会将所有能量转移到材料上。因此,使用了额外的数据源,以便将通常被忽略的低能质子纳入派生光谱中。数据被转移到通用单位集,最终可以进行比较和合并。这包括对最常见模型的比较,包括数据基础、适用性和可访问性。因此,拟合了广泛而连续的光谱,其中考虑了所有不同模型及其不同的能量和通量。每一覆盖年份都用拟合光谱表示,包括适用的置信度。针对太阳活跃和安静时期,提供光谱。
聚酰亚胺ber具有高强度和模量和较高的放射性耐药性,1使其可以用作航天器和火箭的轻质电缆夹克,以及用于空间应用的ber-ber强化复合材料。由于空间中使用的材料可能会受到大量的高能辐射,因此必须评估聚酰亚胺BER对高能辐射的响应很重要。在几年内实施了大量使用聚酰亚胺的空间实验。研究了Kapton对3 MeV质子辐射的辐射敏感性,结果表明,在放射溶解时,分解,断裂应激和聚合物的断裂能显着降低。此外,断裂时的伸长率与用相同剂量的2 meV电子照射诱导的伸长级相似。2电子,质子或两个合并的辐照都诱导的键断裂和聚酰亚胺分子的交联,而质子辐射可以比电子辐照更容易打破PI键,然后导致在样品表面积上形成石墨样结构。3质子辐照增加了初始摩擦系数,并降低了聚酰胺的稳定摩擦系数。4辐照PI的磨损速率下降了:电子照射>质子辐照>联合照射。5质子照射还可以控制聚酰亚胺的折射率。折射
近年来,氮化镓 (GaN) 高电子迁移率晶体管 (HEMT) 受到航天电子界越来越多的关注。尽管 GaN 的电子质量优于 Si,电子迁移率更高,热导率优于砷化镓 (GaAs),但后者的辐射硬度研究已有数十年 [1],并且普遍得到充分了解。航天电子设备面临的主要威胁之一是重离子轰击引起的单粒子效应 (SEE)。虽然大多数此类事件是由银河宇宙射线 (GCR) 造成的,但这些粒子的能量通常比实验室环境中产生的更高。作为一种折衷方案,人们使用低能离子来产生类似的效果。通过这些重离子测试,结合工程控制和统计模型,通常可以可靠地预测电子设备的辐射硬度。在过去的 15 年里,人们对 GaN 设备 [2-7] 的 SEE 和位移损伤剂量 (DDD) 进行了广泛的研究和测试。不幸的是,即使是这些低能量重离子也只有全球少数几家工厂生产。一种更常见的高能粒子是质子。在医疗行业中,约 200 MeV 的质子被大量用于治疗和诊断目的,与重离子相比,它相对容易获得 [8]。许多研究
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
SEP 能量从超热能(几千电子伏)到相对论能(质子和离子为几千兆电子伏)对空间环境表征具有重要影响。它们与太阳耀斑和 CME 驱动的冲击波一起从太阳发射。SEP 事件构成严重的辐射危害,对依赖航天器的现代技术以及太空中的人类构成威胁。此外,它们还对航空电子设备和商业航空构成威胁。因此,必须制定缓解程序。HESPERIA H2020 EU 项目开发了新型 SEP 事件预测工具,并高度依赖于这些工具来缓解 SEP 事件。这些预测工具以及针对它们所预测事件的科学研究自然存在一些共同的局限性,例如基础数据的可用性和质量。可以说,空间天气应用最重要的数据源之一是 1995 年发射的 NASA/ESA SOHO,它自 1996 年以来一直绕拉格朗日点 L1 运行。该航天器的科学有效载荷由几台远程和现场仪器组成,包括 EPHIN,这是一台视场约为 83 的粒子望远镜,几何因子为 5.1 cm2sr,可测量能量在 0.25 至 10.4 MeV 之间的电子以及能量范围在 4.3 至 53 MeV/核子以上的质子和氦
机械和设备的安装或搬迁以及操作(包括但不限于实验室设备,电子硬件,制造机械,维护设备以及健康和安全设备),只要使用已安装或重新定位的物品与接收结构的一般任务一致。涵盖的动作包括对现有建筑物的修改,在设备安装和搬迁所必需的先前干扰或发达的区域内或连续。这种修改不会明显增加现有建筑物的占地面积或高度,或者有可能对环境影响的类型和幅度进行重大变化。b3.6小规模的研发,实验室操作和试点项目
摘要:已广泛报道了质子泵抑制剂(PPI)的不适当处方,通常缺乏最初排除幽门螺杆菌(HP)感染和胃功能状态的评估。本研究的目的是评估胃功能测试的实用性,以确定酸输出以及HP状态,以便更好地直接直接直接PPI治疗处方。评估了来自初级保健人群的没有警报症状的脱发患者。确定了每位患者的血清胃蛋白原I(PGI)和II(PGII),胃蛋白酶17(G17)和抗HP IgG抗体(Biohit,Oyj,Finland)。对于每个受试者,收集了有关症状,过去的HP感染病史和PPI使用的数据。根据PGI和G17值确定对PPI的治疗反应,其中G17> 7在存在升高的PGI和不存在慢性萎缩性胃炎(CAG)的情况下被认为是足够的反应。在2583例消化不良患者中,1015/2583(39.3%)在血清采样前至少3个月接受PPI治疗,因此包括在研究中。在206(20.2%)和37例(3.6%)的患者中诊断出活跃的HP感染和CAG。总体而言,在34.9%的34.9%中观察到对PPI的足够治疗反应,在最高剂量下达到66.7%。然而,无论使用的剂量如何,41.1%和20.4%的患者对PPI的反应较低(G17 1-7)或不存在(G17 <1)。最后,所有患者都必须消除HP,并且胃功能测试可确保在开始长期PPI治疗之前寻求并进行了充分的治疗。根据胃功能反应,目前正在使用PPI维护治疗的大多数患者缺乏继续这种药物的适当指示,因为没有酸输出(如CAG)(如CAG),或者是因为胃酸水平未能升高,表明缺乏胃酸负反馈。
目的:评估用以下3种治疗方式治疗的食管癌患者的辐射诱导淋巴细胞耗竭的可能差异:强度调节放射治疗(IMRT),被动散射质子治疗(PSPT)和强度调节的蛋白质治疗(IMPT)。方法和材料:我们使用了2个预测模型来估计基于剂量分布的淋巴细胞耗竭。模型我使用了淋巴细胞存活与体素剂量之间的分段线性关系。Model II假定淋巴细胞作为总剂量的函数呈指数耗尽。模型可以使用每周的绝对淋巴细胞计数在整个治疗过程中收集的测量。我们随机选择了45例在我们机构中用IMRT,PSPT或IMPT治疗的食管癌患者(每种模式15),以证明这两种模型的适应性。在多种模态的计算机模拟中纳入了已接受PSPT的10例食管癌患者。使用我们的每种模式的我们的实践标准制定了一个IMRT和一个IMPT计划,作为每个患者现有PSPT计划的竞争计划。我们拟合了用于治疗的PSPT计划的模型,并预测了IMRT和IMPT计划的绝对淋巴细胞计数。结果:对每个患者模式组的模型验证表明,在模态和模型中,测得的和预测的绝对淋巴细胞计数之间的良好一致性,其平均误差为0.003至0.023。结论:质子计划在治疗课程后的预测风险低于光子计划。在对10名PSPT患者的IMRT和IMPT的仿真研究中,预测的绝对淋巴细胞计数(ALC)NADIRS分别在IMRT,PSPT和IMPT治疗后,使用Model I和0.14、0.22,以及0.14、0.22,以及0.22 k/ l L L L LINES II使用模型。此外,IMPT计划在预测的淋巴细胞保存方面优于PSPT。
一名 64 岁男性,曾因前列腺癌、高血压和胃溃疡接受治疗。他正在服用氨氯地平、奥美沙坦、阿替洛尔、他达拉非、萘哌地尔、埃索美拉唑和 Miya-BM®(丁酸梭菌 MIYAIRI 588 菌株;日本东京宫崎县制药有限公司)。他没有吸烟史,偶尔饮酒。就诊前四天,他出现恶心和食欲不振。由于症状持续,他去了附近的诊所,医生开了止吐药。他的症状没有改善,他变得头晕目眩,无法移动,于是他叫了救护车。就诊时生命体征显示患者昏睡,但意识清醒,格拉斯哥昏迷量表评分为 15,血压为 141/100 mmHg,呼吸 29 次/分钟,脉搏 111 次/分钟,外周血氧饱和度 (SpO 2 ) 为 98%。检查期间,患者出现全身强直性抽搐。抽搐立即