(c) 1 H NMR, correlation of structure with spectra: Chemical environment and shielding, chemical shift and originof its concept, reference compound, local diamagnetic shielding and magnetic anisotropy, relation with chemical shift, chemical and magnetic non- equivalence, spin-spin splitting and its origin, Pascal's triangle, coupling constant, mechanism of coupling, integral, NMR solvents and their residual peaks,杂原子上的质子,四极扩大和去耦,构象的影响和立体化学对光谱,karplus关系,非对映异构体质子,异核耦合至19 F和31 p,虚拟偶联,长距离,长范围耦合 - EPI,bay效应。动作,自旋去耦和双共振的移动试剂机制。一些化合物和药物的光谱的解释。
摘要 我们建议在选定的系统中采用三种不同的时间微分扰动角相关测量来测试 MULTIPAC 装置。首先,将对 111 Cd (5/2+) 激发态磁偶极矩进行精确测量。我们还建议测量 Pd 中 Cd 的 Knight 位移随温度的变化,与早期实验相比,测量精度大大提高。最后,将进行第三个实验来测试 MULTIPAC 创新理念的可行性,即通过使用 111 In 和 111m Cd 两个探针测量多铁性系统 BiFeO 3。所需质子:目标上的 9 个质子位移(两年内至少分为 4 次运行)实验区域:GLM 区域、ISOLDE 大厅或离线实验室
重离子碰撞(HIC)中中子与质子的椭圆流比是限制核对称能的重要探针之一,但高精度测量中子流对实验技术来说是一个巨大的挑战。本文研究了质子的椭圆流,发现v 2 符号由负变为正的速度对对称能的密度依赖性很敏感。通过将现有的FOPI质子流实验数据与超相对论量子分子动力学(UrQMD)模型的计算结果进行比较,提取出核对称能的斜率参数为L 0 = 43±20 MeV,置信度为95%。这与最近许多关于核结构性质的研究结果一致,也与最近的ASY-EOS实验结果部分重叠。
摘要 我们希望提出一种基于涉及蛋白质-蛋白质相互作用的大脑间超快自发信息通路来绑定内在信息的机制。质子是用于在像大脑这样的复杂水介质中传输比特单元的便捷量子对象。这种介质中的声子-极化子相互作用增加了信息复杂性,涉及复杂的蛋白质相互作用,这些相互作用对于超流体般的高速公路至关重要,使意识过程能够穿透大脑区域,这些区域是由不同的受调控的基因组而不是单个区域特定的基因组成的。大脑皮层中的蛋白质通路连接在一个由数千种蛋白质组成的网络中。为了理解大脑间通信的作用,我们假设界面水晶格中的质子电流是由声子-极化子振动引起的,在电磁场存在的情况下,声子-极化子振动可以导致超快速通信,其中热量子比特、物理感觉和质子是用于在复杂水介质中传输比特单元的便捷量子对象。由于准质子绕闭合环运动的能量而引起的热振荡频率与电磁振荡频率相对相等,这证实了准极化子的存在。声子极化子是与晶格振动模式耦合的电磁波。然而,当它们由质子专门产生时,它们被称为声子耦合准粒子,即与振动运动耦合。我们从准粒子开始,向上移动到亚细胞、细胞和神经元结构中的生物分子通信,导致多尺度信息“位”的负熵纠缠。信奉量子势化学,稳态下负增益上固有信息的相互依赖性代表了微观随机量子热涨落的中观集合,通过负熵衍生的、温度相关的、耗散的量子势能来表达。后者取决于扩散函数和温度的时间导数,从根本上解释了完整脑理论。关键词:量子势化学;量子热涨落;热量子比特;本征信息;Grotthuss机制;负熵增益;准极化子;质子;耗散量子势能;共振;完整脑理论。
▪ 每个原子都有一个带电的子结构,由原子核组成,原子核由质子和中子组成,周围环绕着电子。(HS-PS1-1)▪ 元素周期表按原子核中的质子数水平排列元素,并将具有相似化学性质的元素放在列中。该表的重复模式反映了外层电子态的模式。(HS-PS1-1)▪ 物质在整体尺度上的结构和相互作用由原子内和原子间的电力决定。(HS-PS1-3),(HS-PS2-6 的次要部分)▪(NYSED)理想气体的概念是解释气体行为的模型。当真实气体处于低压和高温时,它最像理想气体。(HS-PS1-9)▪(NYSED)溶液具有可以定性和定量描述的特征性质。(HS-PS1-10)PS1.C:核过程
质子疗法是一种尖端的癌症治疗,是癌症患者的晚期放射治疗形式。1-3传统放射疗法使用高能量光束或光的光束杀死癌细胞。质子疗法采用了一束带正电荷的颗粒 - 质子,质子加速至60%的光速和高达2.5亿电子伏特的速度。使用磁铁这些高能质质子精确地针对体内的肿瘤特定部位,在该肿瘤中输送能量以破坏肿瘤细胞。该技术允许精确靶向癌细胞,同时最大程度地减少对周围健康组织的损害。在传统的放射治疗能量中沿着梁的整个路径释放,在质子治疗中,能量沉积在特定点。1质子疗法,因此提供
扑热息痛✓PKA(酸解离常数)ː–•弱酸和弱碱基的水溶性由化合物的PKA和培养基的pH值控制。•pH和PKA•具有pH或PKA值后,您就会了解有关溶液的某些知识及其与其他溶液的比较:•pH越低,氢离子的浓度越高[H +]。•PKA越低,酸越强,捐赠质子的能力就越大。•pH取决于溶液的浓度。这很重要,因为它意味着弱酸实际上可以比稀释的强酸要低。例如,浓醋(乙酸,弱酸)的pH值比稀释液(浓酸)的pH值低。•另一方面,每种类型的分子的PKA值是恒定的。它不受浓度影响。•即使是化学物质,通常被认为是碱也可以具有PKA值,因为术语“酸”和“碱”只是指物种是否会放弃质子(酸)或去除它们(碱)。例如,如果您具有13个PKA的基础y,它将接受质子并形成YH,但是当pH超过13时,YH将被质子化并变为Y。由于y在pH值大于中性水的pH值(7)的pH值中去除质子,因此被认为是碱。
对质子的深层非弹性散射提供了第一个证据,表明哈德子不是基本的,而是由夸克组成[1,2]。这是确定质子内部分布函数(PDF)的必不可少的工具,在质子内进行横截面预先分解所需的。但是,带电的瘦素相互作用,仅探测被充电的夸克的密度。必须推断出中性胶子的密度,这可以通过研究夸克PDF如何以由交换的虚拟光子质量设定的比例来发展来完成。这些PDF以拟合[3-5]的拟合确定,包括尤其是E±P散射[6,7],在PP碰撞中,向量玻色子[8-11]和重型Quarks [12-15]的正向产生[12-15]。由于缺乏低x的数据,Parton携带的强子动量的比例,归因于Gluon PDF的不确定性在低x时很大,甚至与X的gluon密度兼容,甚至与x [16]兼容。因此需要其他方法才能访问Gluonic PDF。PP碰撞中的中央独家媒介产生(CEP)是单个介子的准弹性生产,使质子完好无损。独家志生产的产生是由一个接近其质量壳的虚拟光子转换为CC对,后者将其放到J /ψ或ψ(2 s)介子中。这些过程在魅力夸克质量的尺度上探测了gluonic pdf。该过程的排他性要求,在领先顺序上,目标强子可以改变两个胶子。1。因此,横截面大约缩放为Gluon密度平方[17-20]。过程和主要背景如图