涵盖虚拟现实(VR),增强现实(AR)和混合现实(MR)[1]的扩展现实(XR)的领域,近年来已经显着上升,尤其是在引入诸如Apple Vision Pro [2]和Meta Quest 3 [3]之类的现代耳机的引入中。这些设备使XR更容易获得,并为各种领域的身临其境的体验开辟了新的可能性,包括游戏,教育,医疗保健等。但是,XR应用程序的开发仍然很复杂且具有挑战性。创建沉浸式和互动体验需要技术专业知识,这是一个耗时的过程。鉴于所涉及的复杂性,原型制作在缓解这些挑战方面起着至关重要的作用。原型制作使开发人员可以快速迭代设计概念,并在开发周期的早期收集用户反馈[4]。这个迭代过程不仅有助于完善设计,而且还减少了与XR应用程序开发相关的总体工作和成本。通过原型XR应用程序,设计师和开发人员可以更好地了解用户体验,确定潜在问题并做出明智的决策,最终导致更加抛光和成功的XR体验。我们目睹了生成人工智能的利用率显着上升,尤其是在引入大语言模型[5](例如Chatgpt [6])之后。今天,有各种生成的AI模型可以合成新文本[6,7,8],图像[9,10],音乐[11]甚至视频[12]。此功能已导致
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月26日。; https://doi.org/10.1101/2024.04.26.591264 doi:biorxiv Preprint
将设计概念传达给利益相关者。然而,原型制作可能是耗时的和资源密集的,可以进行多次迭代和手动调整以实现所需的结果[3]。在概念设计阶段,通常以线性方式从素描到原型。然而,研究表明,处理这些活动的同时可以提供很大的优势[2]。鉴于概念设计确定了产品终生成本的70-80%[4,5],以适当的广度和深度探索范围的空间确实很有价值。decite this,素描和原型制作通常是按顺序进行的,因为素描比原始分类更快,开销较低[1]。生成AI的最新突破使人们能够通过学习训练数据中的基本模式来产生新颖,看不见的图像。通过生成模型,可以简化外观般的制作过程,从而可以快速发电和设计选项的迭代,从而大大降低与手动方法相关的时间和成本。这可以使设计空间探索,以各种示例激励设计师。此外,将机器学习纳入原型开发过程,为通过简单迭代而增强用户互动和反馈打开了大门,如图7所示。此外,可以通过对他们的设计愿景的身体表现来加强发展团队之间的沟通。最终,机器的集成
摘要 使用 3D 打印的聚合物增材制造技术用于高频率毫米波(约100 至 300 GHz)应用正在兴起。在我们之前的工作(金属管矩形波导和自由空间准光学元件)的基础上,本文通过演示紧凑的多通道前端子系统,将两种介质在 G 波段(140 至 220 GHz)结合在一起。在这里,概念验证演示器集成了八种不同类型的 3D 打印组件(总共 30 个独立组件)。此外,两个测试平台和子系统的外壳都是 3D 打印的单件,以支持即插即用开发;提供轻松的组件组装和对齐。我们利用准光学测试平台引入了定制的自由空间 TRM 校准和测量方案。均等功率分配在我们的多通道应用中起着至关重要的作用。在这里,我们介绍了一种用于上毫米波应用的宽带 3-D 打印准光学分束器。我们对各个组件和完整集成子系统的定量和/或定性性能评估证明了在如此高的频率下使用消费级桌面 3-D 打印技术的潜力。这项工作为低成本、快速原型设计和完整毫米波前端子系统的小批量生产开辟了新的机会。
专题课程介绍了物理原型制作和为期一年的项目中最常用的材料。本课程包括基础理论和实际动手实验和项目,让学生获得原型制作材料的基本知识,包括金属、聚合物、玻璃、木材等。还将介绍一些用于未来项目的高级材料,例如金属薄膜、液态金属、石墨烯等。材料的特性也将在实验期间进行测试和测量。学生将通过讲座和实际动手实验获得知识。
用作神经肌肉接口的软生物电子植入物的快速原型设计 Dzmitry Afanasenkau 1& , Dana Kalinina 2& , Vsevolod Lyakhovetskii 3,5 , Christoph Tondera 1 , Oleg Gorsky 2,3,5 , Seyyed Moosavi 1 , Natalia Pavlova 2,3 , Natalia Merkulyeva 2,3,5 , Allan V. Kalueff 6,7 , Ivan R. Minev 1,8#* , Pavel Musienko 2,3,4,5#* 1 生物技术中心 (BIOTEC), 分子和细胞生物工程中心 (CMCB), 德累斯顿工业大学, Tatzberg 47-49, 01307 Dresden, 德国。 2 圣彼得堡国立大学转化生物医学研究所,圣彼得堡,Universitetskaya emb. 7/9,199034,俄罗斯 3 俄罗斯科学院巴甫洛夫生理研究所,圣彼得堡,马卡洛娃 emb. 6,199034,俄罗斯 4 俄罗斯联邦卫生部圣彼得堡国立肺结核研究所儿童外科和矫形诊所,圣彼得堡,Politekhnicheskaya,32,191036,俄罗斯 5 俄罗斯联邦卫生部俄罗斯放射学和外科技术研究中心,圣彼得堡,列宁格勒街,70,197758,俄罗斯 6 西南大学药学院,重庆,中国 7 乌拉尔联邦大学,叶卡捷琳堡,俄罗斯8 英国谢菲尔德大学自动控制与系统工程系,Mappin 街,谢菲尔德,S1 3JD,英国。& 这些作者贡献相同 # 这些作者贡献相同 * 通讯作者;pol-spb@mail.ru (PM);i.minev@sheffield.ac.uk (IRM)。摘要 神经肌肉接口是将生物电子技术转化为临床医学应用所必需的。在这里,通过利用机器人控制的低粘度导电油墨喷墨沉积、绝缘硅酮糊剂的挤出以及通过冷空气等离子体对电极表面的原位激活,我们表明可以快速打印柔软的生物相容性材料,以按需制作定制电极阵列的原型,这些电极阵列可以很好地适应特定的解剖环境、功能和实验模型。我们还表明,打印的生物电子接口允许长期整合和功能稳定性,用于监测和激活猫、大鼠和斑马鱼的大脑、脊髓和神经肌肉系统中的神经通路。该技术可能使个性化生物电子技术应用于神经假体。一句话编辑摘要:通过机器人控制导电墨水和绝缘墨水的沉积,可以快速制作出适合特定解剖环境、功能和实验模型的定制软电极阵列原型。
在20世纪初期,认知研究和动物行为研究的进步引发了训练动物使用筛查的努力。自从Skinner在1948年对鸟类进行实验以来,通过在屏幕上啄食鸽子来指导炸弹[52],研究人员将屏幕作为动物与合并者之间的主要接口,通常以行为和对刺激的行为和反应来量化的相互作用。这项工作旨在评估视觉和其他歧视,测量其他类型的反应并告知育种工作[19],最常见于私人[40],狗[59],鸟类[33]和大鼠[41]。本文所考虑的特定于狗的研究表明,犬类识别物体,其他狗和屏幕上显示的人[4],并且可以跟踪那里显示的物体[59]。最近的工作已经遵循人类计算机相互作用(HCI)学术界如何满足计算机的需求,从而关注如何设计机器以与动物的认知和生理需求相融合[38]。据,科学家们研究了计算机屏幕如何支持动物的体验丰富,有助于帮助助手动物的工作,并支持成功的动物 - 机机相互作用
摘要 原型设计是工业和学术环境中产品开发不可分割的一部分,也是设计教育的主要主题。然而,由于原型设计范围有限,它仍然被视为一项学生实施不佳的设计活动;这一挑战提出了制定结构化指南的必要性。由于分布式设计项目在设计教育中越来越受欢迎,研究强调了数字工具的必要性,以确保全球分散的学生之间的有效协作和沟通。本研究旨在探索学生对原型支持工具 (PST) 的使用情况,该工具旨在协助规划、记录和评估他们的原型设计活动。见解表明,该工具的数字版本 (e-PST) 使学生能够有效地沟通并在记录他们的设计过程时表现出更高的能力,为他们的决策提供理由,并说明他们的结果是如何通过设计迭代来形成的。通过对参与学生的调查和访谈,提出了进一步改进 e-PST 的建议。
热拌沥青 (HMA) 压实操作员支持系统 (OSS) 的成功采用在很大程度上取决于系统的可用性,该系统使用传感信息帮助操作员提高操作的安全性和生产率。然而,在压实 OSS 的设计和开发中存在一个重大难题。一方面,以描述性的方式向操作员提供原始传感数据(即温度和压实计数)可能会使操作员认知超负荷,即信息肥胖问题。另一方面,过度处理的数据可以作为规范的压实指导(例如压实轨迹)呈现给操作员,这可能会让操作员感到失去对操作的控制并使其行业专业化。因此,关于压实 OSS 设计和开发的最佳策略一直存在争议。要将可用性方面置于压实 OSS 设计和开发策略的核心,首先,必须从可用性的角度系统地评估各种 OSS 替代方案。然而,传统的可用性测试方法依赖于使用物理原型,这种方法非常耗时,并且在后勤上难以执行。为了解决这个问题,本研究提出并实施了一种虚拟原型 (VP) 方法来分析不同压缩 OSS 的可用性。在这种方法中,开发并利用了一个虚拟现实 (VR) 压缩模拟器来呈现 3 种不同的压缩 OSS 替代方案,它们在提供的支持级别上有所不同,并从最终用户那里获得了反馈。结果表明,从用户的角度来看,与描述性和规范性系统相比,具有压缩优先级的半指导压缩 OSS 更受青睐。用户倾向于将这种级别的支持视为一种中间解决方案,它为他们提供了一种实时策略(重新)开发的方法,而不会损害他们对流程的控制。事实证明,VR 模拟器有可能成为一个强大的技术评估平台,让最终用户与研究人员和机器设计师就系统进行开放和实质性的对话。