增加受控原子和量子比特的数量的一个基本前提是允许应用相应量信号的微结构,例如B.通过整合微波线路。这是通过叠加结构实现的,类似于多层电路板。 PTB 结构由一组厚金属导体层组成,这些层彼此通过电介质隔开,并通过通孔选择性地相互连接。原则上,金属层的数量是不受限制的,因为每一层都具有高度精确的整体平面化。该工艺仅使用符合环境超高真空对原子和离子捕获的严格要求以及低温操作的材料;此外,该结构的高频特性非常优异。
增加受控原子和量子比特的数量的一个基本前提是允许应用相应量信号的微结构,例如B.通过整合微波线路。这是通过叠加结构实现的,类似于多层电路板。 PTB 结构由一组厚金属导体层组成,这些层彼此通过电介质隔开,并通过通孔选择性地相互连接。原则上,金属层的数量是不受限制的,因为每一层都具有高度精确的整体平面化。该工艺仅使用符合环境超高真空对原子和离子捕获的严格要求以及低温操作的材料;此外,该结构的高频特性非常优异。
成员:M. Akoshima(NMIJ/AIST)、K. Anhalt(PTB)、S. Bell(NPL)、RA Bergerud(JV)、R. Caballero Santos(CEM)、V. Cabral(IPQ)、D. Cardenas-Garcia(CENAM)、D. del Campo Madonado(CCT 主席、CEM / CIPM)、EJUSA(EJU)、YN. MC、A*STAR)、X. Feng(NIM)、V. Fernicola(INRIM)、J. Ferreira(IPQ)、V. Fuksov(VNIIM)、C. Gaiser(PTB)、R. Gavioso(INRIM)、B. Hay(LNE)、F. Jahan(NMIA)、S. Janssens(MSL)、M. Kalemci(UME)、Y.-G. Kim(KRISS)、L. Knazovicka(CMI)、S. Kondratiev(VNIIM)、T. Kopunec(SMU)、VG Kytin(VNIIFTRI)、S.-W. Lee(KRISS)、W. Lei(NMIA)、X. Lu(NIM)、G. Machin(NPL)、MI Maniur(SMU)、JM Mantilla(CEM)、M.-J. MartínHernández(Cem),E。Martines-Lopez(Cenam),B。MascarenhasLozano(Inmetro),A。Merlone(Inrim),C。Meyer(Nist),MJT Milton,MJT Milton(BIPM),BIPM主任,R。Mokhutsoane(R.Mokhutsoane(Nmisa),R.R.R.R.Moretz soher(NMI) RC),AA Falnes Olsen(JV),M。Panman(VSL),P。Pavlasek(SMU),J。Pearce(NPL),A。Peruzzi(NRC),A。Rakonjac(MSL),P。Rourke(NRC),M.Sadli(Lne-LCM/CNAM) Nift),F。Sparasci(LNE),R。Strnad(CMI),S。Tabandeh(Mikes),W。Tew(Nist),E。Vander Ham(Nmia),M。Vinge(vniiftri),L。Wang(a*star),I.Yang(Kriss),S.Yang(Kriss),S。YeYe(N. n. ye)。
人类健康和环境保护是 PTB 第 6 部门的主要工作领域。在此,其任务不仅是为医疗应用提供直接计量支持(例如计算机断层扫描的剂量测定),而且还要开展对生物组织中电离辐射相互作用的基本理解的研究,处理人员和患者的辐射防护问题,并可靠地监测我们的环境以保护我们的公民免受放射性物质的危害。通过为重要的环境问题提供计量支持,我们为维护和改善我们的生活条件做出了贡献。通过开发用于测量电离辐射(无论是带电粒子、光子还是中子)的现代技术,我们参与了科学基础研究项目。下面将通过报告期间的几个例子来说明这一点。
对于计量机构使用的每种热量计,都开发了自己的校准策略。虽然 LNE 的参考热量计可以通过电能进行校准,但商用热量计使用由甲烷、二氧化碳和硫化氢组成的二元和三元校准气体混合物。INM-BRML 的热量计根据 DIN 51899 进行校准,使用一种校准气体和一种质量控制气体。PTB 的热量计根据 ISO 6143 进行校准,使用四种校准气体。为了进行验证,使用了六种二元或三元类似沼气的混合物以及一种类似于煤层气的 10 组分气体。图 2 显示了测量的热值与根据 DIN EN ISO 6976 计算的热值的相对偏差及其不确定性。
有些个人和组织给予了我们很大的帮助,我们觉得有必要给予他们明确的认可。特别是美洲国家组织科学技术办公室的 Oscar Harasic、德国 PTB 的 Dieter Schwohnke、Wilfried Schulz、Eberhard Seiler 和 Stefanie Reichertz 女士、Mess- und Eichwesen Niedersachsen 的 Dieter Ullrich、Metegra 的 Michael Bosse-Arbogast、Kai-Uwe Thase 及其来自 Kellogs、Dieter Buer 和 Klaus 的专业人员来自 Eichamt Bremen 的 Helmboldt、BIML/OIML 的 Jean-François Magana、法国经济、金融和工业部南方向计量的 Pierre Canavaggio、西班牙计量中心的 Ángel García San Román 和 Carmen Sevilla Antón 女士、Danièle 女士BIPM 的 Le Coz。
它们之间的引力红移,从而得出它们的高度差。这种研究方法是由德国科学基金会 (DFG) 合作研究中心 1128 (“geo-Q”) 的物理学家和大地测量学家共同开展的。当今最精确的原子钟基于光学跃迁。这种光学钟可以提供稳定的频率,分数不确定度仅为几个 10 –18 。这比实现时间单位 SI 秒的最佳铯喷泉钟精确约 100 倍。然而,使用卫星频率传输的时钟比较限制在 10 –16 附近的频率分辨率。为此,PTB 和巴黎两所法国研究所(空间参考系统、LNE-SYRTE 和激光物理实验室、LPL)的科学家多年来一直致力于光纤连接的研究。
BRIC 巴西、俄罗斯、印度和中国 BMZ 德国联邦经济合作与发展部 EFQM 欧洲质量管理基金会 GDI 德国发展研究所 GlobalGAP 全球良好农业规范伙伴关系 IS 创新体系 LDC 最不发达国家 MSTQ 计量、标准化、测试和质量保证 NIS 国家创新体系 NMI 国家计量院 ODA 官方发展援助 OECD 经济合作与发展组织 PTB 德国联邦物理技术研究院 QI 质量基础设施 QMS 质量管理体系 R&D 研究与开发 SI 国际单位制 SMEs 中小企业 TBT 技术性贸易壁垒 TT 技术转让 UNCTAD 联合国贸易和发展会议 WTO 世界贸易组织
