摘要 兴奋和抑制 (E/I) 之间的精细平衡对于大脑正常功能至关重要。GABA 能系统的紊乱会改变这种平衡,是各种神经系统疾病的共同特征,包括自闭症谱系障碍 (ASD)。磷酸酶和张力蛋白同源物 (PTEN) 的突变与 ASD 密切相关,PTEN 是磷脂酰肌醇 3-磷酸激酶/Akt 通路的主要负调节剂。然而,尚不清楚 PTEN 缺陷是否会对抑制和兴奋信号产生不同的影响。利用秀丽隐杆线虫的神经肌肉系统,其中兴奋性 (胆碱能) 和抑制性 (GABA 能) 输入都调节肌肉活动,我们发现 daf- 18 / PTEN 突变会影响 GABA 能(但不影响胆碱能)神经发育和功能。这种选择性影响导致抑制信号传导不足。在 daf- 18/PTEN 突变体中观察到的 GABAergic 系统中的缺陷是由于发育过程中 DAF- 16/FOXO 活性降低所致。生酮饮食 (KGD) 已被证明对与 E/I 失衡相关的疾病有效。然而,其作用机制在很大程度上仍然难以捉摸。我们发现,在早期发育过程中富含酮体 β -羟基丁酸的饮食会诱导 DAF- 16/FOXO 活性,从而改善 daf- 18/PTEN 突变体的 GABAergic 神经发育和功能。我们的研究为 PTEN 突变与神经发育缺陷之间的联系提供了宝贵的见解,并深入探讨了 KGD 潜在治疗效果的潜在机制。
雷帕霉素(MTOR)信号通路的机理靶标的过度激活与十几种神经系统疾病有关,导致一系列病理,包括过多的神经元生长,神经元迁移的中断,皮质性增生性不足,卵巢症,癫痫和自动抗体。MTOR途径还调节血管生成。因此,在本研究中,我们询问了MTOR负调节剂的PTEN或TSC2的损失,在三种鼠标模型中都会改变脑血管系统:一种损失仅限于海马牙齿颗粒细胞[DGC-PTEN敲除(KOS)],第二次损失了Penter的PET损失,而Pten的Fore Pertrave neurons(Fbrain neurons)(FB)损失(FB)(FB)(FB)(FB)的第三个损失(FB)。来自皮质兴奋性神经元(F- TSC2 KO)的TSC2。在DGC-PTEN敲除中,海马总血管的长度和每颗齿状回的体积急剧增加。dgc- pten敲除总体上具有较大的齿状回合,但是,当标准化到这些较大的结构时,可以保留血管密度。此外,血脑屏障完整性的测试并未显示渗透性增加。fb- pten Kos概括了更受限制的DGC-PTEN KOS中的发现,其血管面积增加,但保留了血管密度。fb- pten Kos确实表现出血管生成因子VEGFA的升高。与PTEN的发现相反,皮质兴奋性神经膜的TSC2局灶性丢失产生了血管密度的局部增加。一起,这些研究表明,高血管化不是MTOR多激活模型的一致特征,并表明不同MTOR途径调节基因的丧失对血管生成产生了明显的影响。
(A) 果蝇 (Drosophila melanogaster) 和果蝇 (D. miranda) 中 Pten 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (上) 和果蝇 (D. miranda) (下) 中目标基因 Pten 所在的 DNA 链。指向右侧的细箭头表示 Pten 在果蝇 (D. miranda) 中位于正 (+) 链上,指向左侧的细箭头表示 Pten 在果蝇 (D. melanogaster) 中位于负 (-) 链上。指向与 Pten 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Pten 反方向的宽基因箭头相对于细箭头位于反链上。果蝇 (D. miranda) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因直系同源,而黑色基因箭头表示非直系同源。灰色箭头表示在两个基因组邻域中都存在但不是同源的基因(在本例中为 Ror),在 D. miranda 中位于 Pten 的上游,但在 D. melanogaster 中位于 Pten 的下游。D. miranda 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符是 D. miranda 特有的。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014)。D. miranda 中 Pten 的编码区显示在用户提供的轨道(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括果蝇 (D. melanogaster) 蛋白质的 Spaln(紫色,果蝇 (D. melanogaster) 的 Ref-Seq 蛋白质比对)、NCBI RefSeq 基因的 BLAT 比对(深蓝色,果蝇 (D. miranda) 的 Ref-Seq 基因比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性和成年雄性的 RNA-Seq(分别为红色和浅蓝色;果蝇 (D. miranda) 的 Illumina RNA-Seq 读段比对)以及使用果蝇 (D. miranda) RNA-Seq (SRP009365) 由 regtools 预测的剪接点。所示的剪接点具有最小读取深度 10,其中 10-49、50-99 和 100-499 支持读取分别以蓝色、绿色和粉色表示。 (C) 果蝇 Pten-PB(x 轴)与果蝇直系同源肽(y 轴)的点图。左侧和底部标明氨基酸编号;顶部和右侧标明 CDS 编号,CDS 也以交替颜色突出显示。点图中的间隙表示序列相似性较低的区域。
摘要:细胞命运决定是一个复杂的过程,通常被描述为细胞在崎岖的路径上行进,从 DNA 损伤反应 (DDR) 开始。肿瘤蛋白 p53 (p53) 和磷酸酶和张力蛋白同源物 (PTEN) 是此过程中的两个关键参与者。虽然这两种蛋白质都被认为是关键的细胞命运调节剂,但它们在 DDR 中协作的确切机制仍然未知。因此,我们提出了一个动态布尔网络。我们的模型结合了从 NSCLC 细胞获得的实验数据,是同类模型中的第一个。我们网络的野生型系统显示 DDR 激活 G2/M 检查点,这会触发一系列事件,涉及 p53 和 PTEN,最终导致四种潜在表型:细胞周期停滞、衰老、自噬和细胞凋亡(四稳态动力学)。网络预测与另外两种细胞系(HeLa 和 MCF-7)中的功能增益和损失调查相对应。我们的研究结果表明,p53 和 PTEN 充当分子开关,激活或停用特定通路来控制细胞命运决定。因此,我们的网络有助于直接研究 DDR 中的四重细胞命运决定。因此,我们得出结论,同时控制 PTEN 和 p53 动态可能是增强临床结果的可行策略。
PTEN 错构瘤综合征 (PHTS) 是一系列由 PTEN 的种系突变引起的遗传性癌症综合征。PHTS 备受关注,因为它的神经系统合并症发生率很高,包括大头畸形、自闭症谱系障碍和智力障碍。由于 PHTS 的详细脑形态和连通性仍不清楚,我们对 PHTS 中的脑磁共振成像 (MRI) 进行了定量评估。12 名 PHTS 患者和神经典型对照者的 16 张结构性 T1 加权 MR 图像和 9 张扩散加权 MR 图像用于结构和高角度分辨率扩散 MRI (HARDI) 纤维束成像分析。75% 的 PHTS 参与者观察到胼胝体肥大,33% 的参与者观察到多小脑回畸形,83% 的参与者观察到脑室周围白质病变,17% 的参与者观察到异位。虽然脑回指数和半球皮质厚度在两组之间没有显著差异,但 PHTS 患者的整体和局部脑容量显著增加,且局部皮质厚度增加。HARDI 纤维束成像显示胼胝体通路的体积和长度增加,弓状束 (AF) 的体积增加,双侧下纵束 (ILF)、双侧下额枕束 (IFOF) 和双侧钩束的长度增加。PHTS 患者的 AF、左侧 ILF 和左侧 IFOF 的各向异性分数降低,表观扩散系数值增加。
透明细胞肾细胞癌(ccRCC)是肾细胞癌最常见的亚型,死亡率最高。对于转移性肾细胞癌,除手术减瘤外,全身药物治疗是最重要的方法。近年来,针对血管生成的酪氨酸激酶抑制剂(TKI)已被用于治疗ccRCC并取得了显著的治疗效果。据报道,大多数接受抗血管生成治疗的患者会在15个月内产生耐药性。靶向治疗耐药的机制极其复杂,尚未阐明。属于DUB的卵巢肿瘤相关蛋白酶结构域蛋白(OTUD)在实体肿瘤的发生中起着关键作用。然而,OTUD在ccRCC中的具体作用仍然难以捉摸。在这里,我们研究了OTUD家族成员在ccRCC中的临床病理学作用。我们证明OTUD1在肾癌中下调并且与肾癌的不良预后有关。然后,我们表明 OTUD1 抑制癌细胞生长。此外,OTUD1 RNA 测序数据分析表明,OTUD1 抑制会触发肾癌细胞中的 AKT 和 NF-κB 通路。此外,OTUD1 与 PTEN 相互作用并调节其稳定性。随后,我们发现 OTUD1 的下调会增加肾癌细胞对 TKI 的敏感性,而这种影响可被 TNF/NF-κB 抑制剂和 AKT 抑制剂阻断。因此,我们确定 OTUD1-PTEN 轴抑制肿瘤生长并调节肾癌对 TKI 的耐药性。
Wnt/β-catenin信号通路是经典的Wnt信号通路,在LC的进展中起着至关重要的作用(25,26)。它影响细胞周期、增殖、侵袭、迁移、凋亡和血管生成等多种生理过程(27-29)。Wnt/β-catenin信号通路中分子的异常表达在LC的发生发展中起着至关重要的作用,例如糖原合酶激酶-3β和β-catenin(30)。最近,姜黄素、山竹醇和芪玉散龙通过调控Wnt通路对LC产生抑制作用(31-33)。然而,LSZ在LC中的作用和分子机制尚不清楚。本研究探讨了不同浓度LSZ对LC细胞中PTEN蛋白表达的影响。结果表明,LSZ可以通过调控Wnt/β-catenin信号通路来调控LC细胞的恶性生物学行为。
该版本的版权持有人于2025年1月18日发布。 https://doi.org/10.1101/2024.08.06.606911 doi:Biorxiv Preprint
肿瘤抑制磷酸酶和Tensin同源物(PTEN)负调节胰岛素信号通路。种系PTEN致病性变异引起与儿童脂肪瘤发育相关的PTEN Hamartoma肿瘤综合征(PHTS)。脂肪祖细胞(APC)在连续培养过程中失去了分化为脂肪细胞的能力,而PHTS患者的脂肪瘤的APC在长时间内保留其脂肪生成潜力。仍然不清楚哪种机制会触发这种异常的脂肪组织生长。为了研究PTEN在脂肪组织发育中的作用,我们进行了功能性测定和对照和PTEN敲低APC的RNA-SEQ。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。 已知叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。 FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。 sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。 为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。 我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。细胞衰老是PTEN敲低与对照细胞的RNA-Seq中发现的最显着富集的途径。这些结果提供了证据,表明PTEN参与了APC增殖,差异和衰老的调节,从而导致PHT患者的异常脂肪组织生长。
肿瘤抑制和致癌信号通路之间的整合控制着癌细胞的各种细胞活动,包括细胞生长和凋亡。致癌基因的激活促进了癌症进展和逃逸机制,而肿瘤抑制因子则调节和抵消了致癌信号的负面影响。值得注意的是,磷酸酶和张力蛋白同源物 (PTEN) 是肿瘤抑制基因的重要家族成员之一,在调节肿瘤细胞的活动中起着关键作用。因此,PTEN 的受损、突变或缺失与癌症患者的低存活率或高肿瘤复发率有关。重要的是,G 蛋白偶联血小板活化因子受体 (PAFR) 的肿瘤高表达与肿瘤进展增加以及非小细胞肺癌 (NSCLC) 等恶性肿瘤的总体存活率下降和预后不良有关。类似地,在各种人类恶性肿瘤中检测到表皮生长因子受体 (EGFR) 信号的过度激活或突变,并且与预后不良有关。当前小型评论的目标是强调 PTEN 和 PAFR 以及 PAFR 和 EGFR 通路之间的机制见解在影响实验模型系统中的癌症生长和/或治疗剂的功效方面的重要性。