量子性证明是一种质询-响应协议,其中经典验证者可以有效地证明不受信任的证明者的量子优势。也就是说,量子证明者可以正确回答验证者的质询并被接受,而任何多项式时间经典证明者都将基于合理的计算假设被高概率拒绝。为了回答验证者的质询,现有的量子性证明通常要求量子证明者执行多项式大小的量子电路和测量的组合。在本文中,我们给出了两种量子性证明构造,其中证明者只需执行恒定深度量子电路(和测量)以及对数深度经典计算。我们的第一个构造是一个通用编译器,它允许我们将所有现有的量子性证明转换为恒定量子深度版本。我们的第二个构造基于舍入问题学习,并且产生的电路深度比通用构造更短,需要的量子位更少。此外,第二种构造对噪声也具有一定的鲁棒性。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
条例#2020-43“一个完整,全尺寸的自行车可以方便,牢固地存放和拆卸的区域,一个或两个车轮都位于稳定的表面上,使整个自行车在其存储位置都保持稳定,而无需使用其他公园的bicycles over of with bicycles或其他对象,而无需使用Quight台,而无需使用其他自行车。自行车停车位可以归类为长期或短期。长期自行车停车场主要旨在为居民,雇员或其他需要存放自行车的人服务于一天,一夜之间或多天的大部分时间。短期自行车停车场主要是为了为访客和顾客(例如零售顾客)提供预计将使用自行车存储几个小时的服务。”所需停车场的范围因建筑物的类型和大小而异条例#2020-43普林斯顿市要求提供自行车停车的条例
Abid Hussain是计算机应用学院的副教授,以及Kota Career Point University(Raj。)的研究和高等研究院长他获得了MCA和博士学位。在计算机应用中。他是科塔职业生涯Point University的知识产权牢房主席。他拥有16年以上高等教育教学经验,包括UG和PG课程。他感兴趣的领域是云计算,网络安全,开源技术,网络挖掘,网络工程和网络安全。他还是职业生涯Point University计算机科学技术的研究主管。 他在著名的UGC护理和Scopus索引计算机科学技术期刊上发表了30多个研究论文。 他还在国家和国际会议上发表了20多篇论文。 他还担任各种国家和国际会议以及研究期刊的审阅者和技术计划委员会成员。 他曾在各种国际会议上担任过会议主席和主题演讲者。 他已经发布了有关计算机科学最新技术的4项专利。 他发表了3本撰写的,并为计算机科学技术编辑了2本编辑。 他还在各种大学中担任博士学位和概要评估的外部考官。 他也是Waset,Iaeng,CSTA,ICSES和IASTER的活跃成员。他还是职业生涯Point University计算机科学技术的研究主管。他在著名的UGC护理和Scopus索引计算机科学技术期刊上发表了30多个研究论文。他还在国家和国际会议上发表了20多篇论文。他还担任各种国家和国际会议以及研究期刊的审阅者和技术计划委员会成员。他曾在各种国际会议上担任过会议主席和主题演讲者。他已经发布了有关计算机科学最新技术的4项专利。他发表了3本撰写的,并为计算机科学技术编辑了2本编辑。他还在各种大学中担任博士学位和概要评估的外部考官。他也是Waset,Iaeng,CSTA,ICSES和IASTER的活跃成员。
单眼深度估计在近年来,由于深度学习的进步,近年来在陆地图像上取得了重大进展。,但主要是由于数据稀缺性而导致的水下场景不足。鉴于水中的光衰减和背面的固有挑战,获得清晰的水下图像或精确的深度非常困难且昂贵。为了减轻此问题,基于学习的方法通常依赖于综合数据或转向自欺欺人或无监督的举止。尽管如此,它们的性能通常受到域间隙和宽松的约束而阻碍。在本文中,我们提出了一种新的管道,用于使用准确陆地深度生成感性的水下图像。这种方法有助于对水下深度估计的模型进行超级培训,从而有效地降低了限制和水下环境之间的性能差异。与以前的合成数据集相反,这些数据集仅将样式转移应用于没有场景内容的情况下的Terres试验图像,我们的方法通过通过创新的STA-
摘要:软骨肉瘤 (CHS) 是异质性的,但总体而言,是第二大最常见的原发性恶性骨肿瘤。尽管在过去几十年中,人们对肿瘤生物学的了解呈指数级增长,但手术切除仍然是治疗这些肿瘤的金标准,而放疗和分化化疗无法充分控制癌症。对 CHS 的深入分子表征揭示了与上皮来源的肿瘤相比的显著差异。从遗传学上讲,CHS 是异质性的,但没有定义 CHS 的特征性突变,然而,IDH1 和 IDH2 突变很常见。血管减少、胶原蛋白、蛋白聚糖和透明质酸的细胞外基质组成为肿瘤抑制免疫细胞创造了机械屏障。相对较低的增殖率、MDR-1 表达和酸性肿瘤微环境进一步限制了 CHS 的治疗选择。 CHS 治疗的未来进展取决于对 CHS 的进一步表征,特别是肿瘤免疫微环境,以便改进和更好地针对性地治疗。
糖尿病是一个重要的全球健康问题,导致广泛的发病率和死亡率,对人类健康构成了严重威胁。最近,生物活性脂质分子1-磷酸盐在糖尿病研究领域引起了极大的关注。这项研究的目的是全面了解鞘氨醇1-磷酸调节糖尿病的机制。通过全面的文献计量分析和对相关研究的深入综述,我们调查并总结了各种机制,这些机制通过这些机制,通过这些机制,鞘氨醇1-磷酸在糖尿病前,1型糖尿病,2型糖尿病及其并发症及其并发症(例如糖尿病性肾病,糖尿病性肾病,腹膜病,心脏病,Neuropathy,Neuropathy,Neuropathy,Neuropant,Neuropathy,Neuropathy,Neuropathy,Neuropathy,<),包括但不限于调节脂质代谢,胰岛素敏感性和炎症反应。这项学术工作不仅揭示了在糖尿病治疗中使用鞘氨醇1-磷酸盐的新可能性,而且还为未来研究人员提供了新的见解和建议。
来自图像的深度估计是具有广泛应用的计算机视觉中的一个长期问题。对于基于视觉的自动驾驶系统,感知深度是理解道路对象和建模3D环境图的相关性的不可或缺的模块。由于深度神经网络用于求解各种视觉概率,因此基于CNN的方法[2-5,13,39 - 42,44,44,46,48,52]主导了各种深度基准。根据输入格式,它们主要将其分为多视图深度估计[3,13,23,26,44,45,51,53]和单视深度估计[14 - 16,19,37,38]。多视图方法估计深度的假设,即给定的深度,相机校准和摄像头姿势,这些像素应相似。他们依靠表现几何形状来三角形高质量深度。但是,多视图方法的准确性和鲁棒性在很大程度上依赖于相机的几何配置以及视图之间匹配的对应关系。首先,需要足够翻译相机以进行三角度。在自主驾驶的情况下,汽车可能会停在交通信号灯处或不移动而不移动,这会导致故障三角剖分。此外,多视图方法遭受动态对象和无动电区域的影响,它们在自动驱动方案中无处不在。另一个问题是对移动车辆的施加优化。在存在的大满贯方法中不可避免地噪声,更不用说具有挑战性和可取的情况了。具体来说,我们提出了一个两个分支网络,即例如,一辆机器人或自动驾驶汽车可以在不重新校准的情况下部署多年,原因是嘈杂的姿势。相比之下,作为单视图方法[14 - 16,19,37,38]依赖于对场景的语义理解和透视投影提示,它们对无纹理区域,动态对象,而不是依赖相机姿势更为易用。但是,由于规模歧义,其性能仍然远非多视图方法。在这里,我们倾向于考虑是否可以很好地结合两种方法的好处,以实现自主驾驶场景中的稳健和准确的单眼视频深度估计。尽管已经在先前的工作中探索了基于融合的系统[1,9],但他们都假定了理想的相机姿势。结果是融合系统的性能甚至比单视深度估计的噪声姿势还差。为了解决这个问题,我们提出了一个新型的自适应融合网络,以利用多视图和单视图方法的优势,并减轻其缺点,以保持高度的精度,并在噪声姿势下提高系统的影响力。一个靶向单眼深度提示,而另一个则利用多视图几何形状。两个分支都预测了深度图和置信图。补充语义提示和边缘细节在多视图分支的成本汇总中丢失了
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
