超级电容器和可充电电池都是储能设备,其中一种的性能优势传统上是另一种的弱点。电池受益于卓越的储能容量,而超级电容器具有更高的功率和更长的循环寿命。这些设备在电动汽车和电网储能应用中的快速应用正在推动它们的进一步发展和生产。积累和理解这两种设备技术的现有知识将为这两个有着共同目标的不同领域未来研究和开发的进展奠定基础。因此,在这篇评论中,我们汇总了过去 18 年超级电容器和电池的能量功率性能趋势,以预测未来十年这些技术的发展方向。我们特别讨论了每种技术在储能领域的影响及其对混合研究的影响。趋势预测表明,到 2040 年,性能最佳的非对称和混合超级电容器在能量密度 (ED) 方面可以与目前正在开发的商业电池技术相媲美。在功率密度 (PD) 方面,电池技术可以实现与某些基于双电层 (EDL) 的超级电容器相当的性能。对于某些应用,我们预见到这两种设备将继续混合以填补能量功率缺口,从而使增强 ED 对 PD 的惩罚变得微不足道。这种预期的改进最终可能会达到饱和点,这表明一旦达到一定水平的 ED,任何进一步的指标增强只会导致与 PD 的严重权衡,反之亦然。在这些技术中观察到的饱和也促使人们探索新的途径,特别强调可持续性,以使用可再生材料和方法实现高性能。
• 用户可以从公共门户网站下载并打印任何出版物的一份副本,用于私人学习或研究。 • 您不得进一步分发该材料或将其用于任何营利活动或商业收益 • 您可以自由分发公共门户网站上标识该出版物的 URL ?
分数量子霍尔 (FQH) 相是由于强电子相互作用而出现的,其特征是任意子准粒子,每个准粒子都具有独特的拓扑参数、分数电荷和统计数据。相反,整数量子霍尔 (IQH) 效应可以从非相互作用电子的能带拓扑中理解。我们报告了所有 FQH 和 IQH 跃迁中临界行为的令人惊讶的超普适性。与预期的状态相关临界指数相反,我们的研究结果表明,对于分数和整数量子霍尔跃迁,临界标度指数 κ = 0.41 ± 0.02 和局域长度指数 γ = 2.4 ± 0.2 相同。从中,我们提取了动力学指数 z ≈ 1 的值。我们已经在超高迁移率三层石墨烯器件中实现了这一点,其中金属屏蔽层靠近传导通道。在之前的研究中,由于在传统半导体异质结构中 κ 的测量值存在显著的样本间差异,而长程关联无序占主导地位,因此在各种量子霍尔相变中观察到的这些全局临界指数被掩盖了。我们表明,稳健的标度指数在短程无序关联的极限下是有效的。
Figure 1. Virtual Worlds' continuum Figure 2. Evolution of the PSTW database from previous publication Figure 3. PSTW composition by technology type Figure 4. Distribution of cases according to their starting date Figure 5. Distribution of cases according to administrative level of application Figure 6. Cases across levels of administration, by technology Figure 7. Distribution of cases according to administrative level and e-government interaction Figure 8. Distribution of cases according to level of administration and status of development Figure 9 . Public value assessment of the cases Figure 10. Public value assessment by type of technology Figure 11. Public assessment subcategories for Improved Public Services Figure 12. Public assessment subcategories for Improved administrative efficiency Figure 13. Public assessment value for Open government capabilities Figure 14. Distribution of AI cases by status of development Figure 15. Distribution of cases by type of e-government service and level of administration Figure 16. Distribution of AI cases by process type and level of administration. Figure 17. Distribution of cases across type of services and functions of government Figure 18. Distribution of AI cases according to application type and function of government. Figure 19. Distribution of AI cases according to technology subdomain. Figure 20. Distribution of Generative AI cases by status of development Figure 21. Geographic distribution of the Generative AI cases and their responsible organisations Figure 22. Distribution of Blockchain-based cases by status of development. Figure 23. Distribution of Blockchain-based cases by level of administration. Figure 24. Blockchain-based cases by e-government type of interaction and level of administration. Figure 25. Blockchain-based cases across type of interaction and function of government. Figure 26. Blockchain-based cases by type of application and function of government. Figure 27. Distribution of AI and Blockchain cases by cross border sector feature Figure 28. Distribution of AI and Blockchain cases by cross sector border feature Figure 29. Distribution of cases of other emerging technologies across functions of government. Figure 30. Cases of emerging technologies by type of service and level of administration.
黑色磷纳米片(BPNSS)由于其独特的物理化学特性而在石墨烯以外的2D材料中是新星。[38–47]在黑色磷(BP)晶体中,不同的BP层通过弱的范德华相互作用堆叠在一起,并且磷原子通过在层中通过SP 3杂交共价键相互联系,在每个phos-Phors-Phorus Atom上留下了一对单独的电子。[48] BPNSS沿扶手椅方向显示出重复的蜂窝结构,并沿着Zigzag方向进行双层布置,从而在BPNS中产生强大的面内各向异性电子和光学特性。[49–51] BPNSS显示了从0.3 eV(bulk bp)到2.0 eV(单层)的厚度依赖性直接带盖的广泛范围。它们的光学响应由激子主导,在几百meV范围内表现出结合能。[52,53]更重要的是,单层BP具有1000 cm 2 v-1 s-1的电荷载体迁移率,而在野外效应晶体管中,良好的ON/OFF ON/OFF比率为10 3-10 4。[54]由于这些令人兴奋的特性,BPNS在光催化,生物医学,能源存储和转换以及电子和光电设备中显示了潜在的应用。[55–61]但是,在环境条件下,BPNS的稳定性较差限制了其实际应用,这主要是因为在氧气和/或水存在下,磷原子化学降解为氧化磷。在不同的钝化策略中,通过共价或非共价方法(方案1)构建异质结构可以帮助获得具有各种架构和功能的基于BPN的异质结构。[62–66]到目前为止,已经证明了不同的方法,例如化学官能化[67-72]和金属氧化物或离子载体质层涂层[73-75],作为改善BPNS环境稳定性的有效方法。基于BPN的异质结构可以提供BPNS的大面积钝化,结合属性
量子计算承诺在许多范围内的指数计算加速度,例如加密,量子模拟和线性代数[1]。即使一台大型,容忍故障的量子计算机仍然有很多年的距离,但在过去的十年中,使用超导电路[2-4]取得了令人印象深刻的进步,导致嘈杂的中间尺度量子(NISQ)ERA [5]。可以预测,NISQ设备应允许“ Quantum-tumpremacy” [6],也就是说,解决了在合理时间内在古典计算机上棘手的问题。最近通过对随机电路的输出分布进行采样[7],这是在53 QUIT的处理器上证明的。最突出的NISQ算法是用于组合优化问题的量子近似优化算法(QAOA)[8-10]和用于计算分子能量的变量量子量化量化算法[11-13]。QAOA是一种启发式算法,可以将多项式速度带到量子中编码的特定问题的解决方案
一项生命实验室科学,KTH-瑞典B皇家技术研究院,瑞典B皇家技术学院,B北部大学,450001,亨南省郑州大学教育部,郑州大学教育部高级药物准备技术的主要实验室瑞典d Atat€Urk大学医学院医学药理学系,25240年,Erzurum,土耳其E e e e Erzurum E,兽医学系,兽医学院,阿塔图尔克大学,Erzurum,25240,土耳其,土耳其F,Firke Intralies,Erzurum Truncator,25200 er er turkey Erlime groum groum,Turkey groum,Turkey gokurum,Turke ful ful Fir Full Full Full Full Full Full Full Full Fire Ercult and Genetics,伊斯坦布尔,土耳其H伊斯坦布尔,夏尔默斯技术大学,哥德堡,哥德堡I大学,瑞典I医学生物学系,医学系,阿塔特·欧克大学,土耳其Erzurum,土耳其Erzurum,Turkey j ost-microbiome互动中心一项生命实验室科学,KTH-瑞典B皇家技术研究院,瑞典B皇家技术学院,B北部大学,450001,亨南省郑州大学教育部,郑州大学教育部高级药物准备技术的主要实验室瑞典d Atat€Urk大学医学院医学药理学系,25240年,Erzurum,土耳其E e e e Erzurum E,兽医学系,兽医学院,阿塔图尔克大学,Erzurum,25240,土耳其,土耳其F,Firke Intralies,Erzurum Truncator,25200 er er turkey Erlime groum groum,Turkey groum,Turkey gokurum,Turke ful ful Fir Full Full Full Full Full Full Full Full Fire Ercult and Genetics,伊斯坦布尔,土耳其H伊斯坦布尔,夏尔默斯技术大学,哥德堡,哥德堡I大学,瑞典I医学生物学系,医学系,阿塔特·欧克大学,土耳其Erzurum,土耳其Erzurum,Turkey j ost-microbiome互动中心
本文对海浪能驱动的反渗透进行了分析。市售的海水淡化系统通过 DC/AC 转换器连接到可变 DC 电源,并改变输入电压以模拟可再生能源系统的响应。具体而言,使用了 2015 年肯尼亚基利海的波浪数据。波浪资源变化会导致波浪能转换器的估计功率输出以及波浪能驱动的海水淡化系统的估计淡水产量发生变化。对于基利海,研究了最多三个用于海水淡化的波浪能转换器。此外,还提出了一种包括太阳能和波浪能的混合系统。实验表明,反渗透海水淡化系统可以在低于额定值的功率水平下运行,但淡水流量较低。结论是,波浪能或波浪能与光伏系统相结合,可被视为海水淡化的电源,带或不带电池储存。
收集了有关2697种有机化学物质的水生生态毒理学的经验数据和计算机数据,以编译数据集,以评估当前质量结构活动关系(QSAR)模型和软件平台的预测能力。本文档为其创建提供了数据集及其数据管道。经验数据是从美国EPA Ecotox知识库(Ecotox)和EFSA(欧洲食品安全局)收集的,报告“ XML模式中的农药生态毒性学层的数据输入研究终点 - 数据库 - 数据库中”。仅保留了经合组织建议的藻类,水坝和鱼类的数据。使用Ecosar,Vega和Tox-Icity估计软件工具(T.E.S.T.)计算每种化学物质和六个端点中的QSAR毒性预测平台。最后,数据集用微笑,Inchikey,PKA和LOGP修改,从Webchem和PubChem收集。©2023作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)