(2)Sonaca是一家成立于1978年在比利时的公司。Sonaca是通过其子公司和北美地区的子公司和生产地点,在全球范围内活跃于民用,国防和空间应用的综合金属航空结构的开发,制造和组装。Sonaca提供了从航空结构概念设计到飞机组件中必需的组件工程和制造(Aerostructures)的完全集成的解决方案,Sonaca的核心业务专注于机翼航空机构,尤其是SLAT系统。Sonaca在比利时成立,最终由Walloon地区主权投资基金Wallonie Entreprendre控制。
许多受访者认为特定的公司,个人或产品:Chatgpt,Google,Siri,Alexa,Meta,Openai,IBM,Baidu,Baidu,Huawei,Midjourney和Elon Musk经常出现。,changpt是迄今为止最常提到的。技术的通用示例也很常见:手机,智能家居,清扫机器人,配音助手,面部和语音识别以及自动驾驶汽车。尽管虚构,但终结器和天网是常见的响应。受访者还经常提及自动驾驶机器和数据或对大量数据的访问和操作。
摘要 公共部门采用人工智能 (AI) 有可能改善服务交付。然而,与人工智能相关的风险很大,公民的担忧已经停止了多项人工智能计划。在本文中,我们报告了一项关于挪威公民对公共服务中使用人工智能的态度的实证研究的结果。我们发现了一种普遍积极的态度,并确定了促成这种态度的三个因素:a) 对政府的高度信任;b) 人类参与其中所带来的保证;c) 对流程、用于人工智能模型的数据和模型内部运作的透明度。我们通过社会契约理论的视角来解释这些发现,并展示了人工智能在公共服务中的引入如何受到社会契约权力动态的影响。我们的研究通过突出政府与公民的关系为研究做出了贡献,并对公共部门的人工智能实践产生了影响。
迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典
本文介绍了一种新型的混合企业线性编程(MILP)模型,用于在瑞典的Day-Ahead(DA)电力和频率封装储备(FCR)市场中堆叠电池储能系统(BESS)。该模型包括一个详细的日历和周期电池降低和市场技术需求建模,旨在最大程度地利用电池所有者从参与DA和三个FCR市场,正常运营(FCR-N)以及FCR(FCR-D)的潜在利润,以及进行上下调查的障碍(FCR-D)。为提出全面的结果,使用一分钟分辨率的真实数据对2022年进行连续的每日优化。模拟了五种利用模式,包括参与无FCR市场(仅DA),只有DA和FCR-N,只有DA和FCR-D上调,只有DA和FCR-D下调,以及DA和所有FCR市场。对于DA和多FCR市场的收入堆叠中的最大潜在利润可能为1MW-1MWH BESS的K€708,这是没有FCR参与情况的22倍。由多FCR市场参与导致的年度退化占电池容量损失的1.7%。考虑优化问题中的退化会使衰老减少29%,而不会对利润产生重大影响。所提出的模型可以作为评估电池操作策略和算法的盈利能力和可持续性的基准。
动物在其胃肠道中拥有复杂的细菌群落,它们与之共享相互作用。这些对宿主的相互作用赠款的众多影响包括对免疫系统的调节,防御病原体入侵的防御,原本无法消化的食物的消化以及对宿主行为IOR的影响。暴露于压力源,例如环境污染,寄生虫和/或捕食者,可以改变肠道微生物组的组成部分,可能影响宿主 - 微生物组相互作用,这些相互作用可以在宿主中表现出来,例如代谢功能障碍或炎症。然而,很少检查野生动物伴侣中肠道微生物群的变化。因此,我们量化了野生银行是否居住在污染环境中,存在环境放射性核素的区域是否表现出肠道微生物群的变化(使用16S扩增子测序)以及使用转录组学的组合方法在宿主健康中发生变化,并使用转录组学的组合方法,组织学构成组织的组织学分析,对短篇小说和较短的细胞酸性酸性酸性酸性酸性酸性酸性酸性酸性。与居住在受污染区域的动物中肠道微生物群发生变化的同时,我们发现宿主中肠道健康不良的证据,例如杯状细胞降低,可能会削弱
采用定向能量沉积技术在用于硬面堆焊的热作工具钢基材上沉积了具有不同层数的冷作工具钢。本研究涉及了覆层工具钢中的缺陷和微观结构。在沉积区发现了包括孔隙和裂纹在内的缺陷,其数量随着沉积高度或层数的增加而增加。大的不规则孔隙主要位于沉积层的下部区域。此类孔隙的形成归因于合金元素在孔隙表面的偏析和热量输入不足。非平衡共晶微观结构是孔隙邻近区域的特征。另一方面,开裂往往发生在沉积层的上部。确定了导致开裂的两个重要因素。第一个是微观结构梯度,当从底部移动到顶部沉积层时,微观结构梯度从细胞状树枝状晶变为柱状树枝状晶。其次,根据Thermocalc软件的模拟,沉积的冷作工具钢表现出相对较大的凝固温度范围,从而对热裂纹具有很高的敏感性。
M.Sc Genetics M.Sc Applied Economics M.Sc Molecular Biology M.Tech Bioinformatics M.Tech Biotechnology M.Tech Computer Science and Engineering M.Tech Embedded Systems & VLSI Design M.Tech Geoinformatics M.Tech Industrial Engineering and Management M.Tech Information Security M.Tech Information Technology M.Tech Information Technology (Artificial Intelligence) M.Tech Information Technology (Data Science)
在过去的二十五年中,MAX 相及其衍生物 MXenes 已成为材料研究的焦点。这些化合物无缝融合了陶瓷和金属特性,具有高导热性和电导性、机械强度、低密度和耐极端条件性。它们的多功能性使其成为各种应用的有希望的候选材料,特别是在用于氢气释放的先进光催化和电催化中。此外,MAX 相和 MXenes 是潜在的储氢材料,具有独特的结构,可为高效的氢气储存和释放提供充足的空间,这对于燃料电池等清洁能源技术至关重要。本综述旨在全面分析它们在光催化、电催化和储氢中的作用,重点关注它们的层状晶体结构。MAX 相集成了优越的金属和陶瓷属性,而 MXenes 提供可调节的电子结构,可增强催化性能。持续探索对于充分发挥其潜力、推动清洁能源技术及其他领域至关重要。