1. 伦敦大学学院可持续资源研究所 (2022 年 11 月),改革电力市场以实现低成本和低碳电力 2. 同上。 3. 英国能源研究中心 (2022 年 4 月),可再生能源和核能能否帮助降低今年冬天的电费? 4. Ofgem,批发市场指标,2023 年 1 月 20 日访问 5. 英国能源研究中心 (2022 年 4 月),可再生能源和核能能否帮助降低今年冬天的电费? 6. 低碳合同公司,《临时征税率和总储备金额》仪表板,访问时间为 2023 年 1 月 24 日 7. 牛津能源研究所 (2017),《未来的脱碳电力系统:‘两个市场’方法》 8. 康沃尔洞察 (2023 年 1 月),《预测到 2030 年电价将下降,但未来十年电价仍将高于疫情前的水平》 9. 牛津能源研究所 (2017),《未来的脱碳电力系统:‘两个市场’方法》 10. 伦敦大学学院可持续资源研究所 (2022 年 11 月),《改革电力市场以实现低成本和低碳电力》
摘要 皮肤是人体最大的器官,环境因素与人体皮肤的相互作用会导致一些皮肤疾病,如痤疮、牛皮癣和特应性皮炎。作为人体免疫防线的第一道防线,皮肤在人体健康中发挥着重要作用,它通过阻止受皮肤微生物群影响很大的病原体入侵。尽管人体皮肤是微生物的具有挑战性的生态位,但人体皮肤上却寄生着各种共生微生物,这些微生物塑造了皮肤环境。皮肤微生物群会影响人体健康,其失衡和菌群失调会导致皮肤疾病。本综述重点介绍了我们对皮肤微生物群及其与人体皮肤相互作用的理解进展。此外,还描述了微生物群在皮肤健康和疾病中的潜在作用,并重点介绍了一些关键物种。讨论了微生物相关皮肤病的预防、诊断和治疗策略,如健康饮食、生活方式、益生菌和益生元。讨论了使用合成生物学调节皮肤微生物群的策略,作为优化皮肤-微生物群相互作用的一个有趣途径。总之,本综述提供了有关人类皮肤微生物群恢复、人类皮肤微生物群与疾病之间的相互作用以及设计/重建人类皮肤微生物群的策略的见解。关键词:皮肤、微生物群、共生微生物、合成生物学、组学技术、宿主-皮肤微生物群相互作用、皮肤疾病、痤疮
摘要 公共部门采用人工智能 (AI) 有可能改善服务交付。然而,与人工智能相关的风险很大,公民的担忧已经停止了多项人工智能计划。在本文中,我们报告了一项关于挪威公民对公共服务中使用人工智能的态度的实证研究的结果。我们发现了一种普遍积极的态度,并确定了促成这种态度的三个因素:a) 对政府的高度信任;b) 人类参与其中所带来的保证;c) 对流程、用于人工智能模型的数据和模型内部运作的透明度。我们通过社会契约理论的视角来解释这些发现,并展示了人工智能在公共服务中的引入如何受到社会契约权力动态的影响。我们的研究通过突出政府与公民的关系为研究做出了贡献,并对公共部门的人工智能实践产生了影响。
21922659,JA,从https://onlinelibrary.wiley.com/doi/10.1002/adhm.202304118下载,由Wiley在线图书馆,wiley在线图书馆[28/02/2024]。 有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可管辖21922659,JA,从https://onlinelibrary.wiley.com/doi/10.1002/adhm.202304118下载,由Wiley在线图书馆,wiley在线图书馆[28/02/2024]。有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可
结构电池是多功能设备,可以同时存储能量并承载机械负载。关键成分是碳纤维,它不仅充当结构增强,而且还可以通过可逆地托管利离子作为电极。仍然对LI和碳纤维相互作用知之甚少。在这里,我们绘制了用螺旋丙烯腈纤维插入的LI插入螺旋晶纤维中的螺旋纤维纤维(AES)。我们表明,在充电/放电速率的缓慢/放电速率下,LI在纤维的横向和纵向方向上均匀分布,并且在完全放电时,所有LI实际上都被排出。以快速的速度,LI倾向于将其捕获在纤维的核心中。在某些纤维中,在固体电解质相(SEI)和纤维表面之间发现LI板。我们的发现可以指导AES分析锂离子电池的其他碳质电极材料,并用于改善结构电池的穿孔。
尽管在早期检测和个性化治疗方面取得了重大进展,但癌症仍然是全球死亡的主要原因之一。目前备受关注的一种可能的抗癌方法是开发能够特异性和高效地递送抗癌药物的纳米载体。由于石墨烯基材料具有高药物负载能力和生物相容性,因此在这方面是很有前途的纳米载体。在这篇综述中,我们概述了石墨烯基材料与正常哺乳动物细胞在分子水平以及细胞和亚细胞水平上的相互作用,包括质膜、细胞骨架和膜结合细胞器,如溶酶体、线粒体、细胞核、内质网和过氧化物酶体。同时,我们汇集了有关石墨烯基材料与癌细胞相互作用的知识,这些知识被认为是这些材料在癌症治疗中的潜在应用,包括转移治疗、靶向药物递送和向非癌症干细胞的分化。我们重点介绍了一些关键参数的影响,例如石墨烯基材料的尺寸和表面化学,它们决定了这些粒子在体内和体外的内化效率和生物相容性。最后,本综述旨在将石墨烯基纳米材料(特别是氧化石墨烯)的关键参数(例如尺寸和表面改性)与它们与癌细胞和非癌细胞的相互作用关联起来,以便设计和改造它们用于生物应用,特别是用于治疗目的。2022 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
致谢 我们感谢 Ipek Ilkkaracan(伊斯坦布尔技术大学)对编写合并报告的支持,以及感谢联合国妇女署和国际劳工组织专家(Anuradha Seth、Valeria Esquivel、Amber Parkes、Brunella Canu、Luis Felipe Velázquez 和 Mamadou Bobo Diallo)的技术审查和协调。我们感谢国际劳工组织与联合国妇女署共同实施联合计划,也感谢我们的国家伙伴、专家和同事进行国别研究并使这项工作成为可能。 联合计划全球协调员和全球技术顾问:Anuradha Seth(联合国妇女署)和 Valeria Esquivel(国际劳工组织)。 技术专家和联合计划管理人员:Amber Parkes(联合国妇女署技术专家)、Mamadou Bobo Diallo(联合国妇女署技术专家)、Brunella Canu(联合国妇女署项目经理)和 Luis Felipe Velázquez(国际劳工组织初级技术官员)。编辑和设计者:Andy Quan(编辑)和 Luis Felipe Velazquez Lopez(设计评审)。本出版物中的内容和信息可在注明来源的前提下使用。推荐引用:联合国妇女署和国际劳工组织 (2023)。综合报告:护理经济公共投资指南:估计护理赤字、投资成本和经济回报版权:联合国妇女署和国际劳工组织 (2024)。
钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
摘要 真实的核反应截面模型是可靠的重离子传输程序的重要组成部分。此类程序用于载人航天探索任务的风险评估以及离子束治疗剂量计算和治疗计划。因此,在本研究中,GSI-ESA-NASA 合作生成了总核反应截面数据集合。该数据库包括实验测量的总核-核反应截面。Tripathi、Kox、Shen、Kox-Shen 和 Hybrid-Kurotama 模型与收集的数据进行了系统比较。给出了有关模型实施的详细信息。指出了文献中的空白,并考虑了哪些模型最适合与太空辐射防护和重离子治疗最相关的系统的现有数据。