通过将光结合到下波长体积,光力学的微腔可以大大增强光和机械运动之间的相互作用。但是,这是以增加光损耗率的成本。因此,将基于微腔的光力系统放置在未解决的边带机制中,以防止基于边带的地面冷却。减少此类系统光损耗的途径是设计腔镜,即与机械谐振器相互作用的光学模式。在我们的工作中,我们分析了这样的光力学系统,其中其中一个镜子与频率很大,即悬挂的Fano镜子。此光力学系统由两种光学模式组成,这些光学模式与悬挂的Fano镜子的运动。我们制定了一个量子耦合模式描述,其中包括标准色散光学耦合以及耗散耦合。我们在线性状态下求解了系统动力学的兰格文方程,表明即使腔本身不在解析的边带机制中,但可以从室温下进行冷却,而是通过强光模式耦合来实现有效的侧带分辨率。重要的是,我们发现,需要针对有效激光衰减来适当分析腔输出光谱,以推断机械谐振器的声子占用。我们的工作还可以预测如何通过工程化Fano Mirror的特性来达到基于FANO的微博中非线性量子光学机械的制度。
由于电池容量有限,能源效率有效的导航构成了电动汽车的重要挑战。我们采用贝叶斯的方法来对路段的能源消耗进行建模,以进行有效的导航。为了学习模型参数,我们开发了一个在线学习框架,并研究了几种探索策略,例如汤普森采样和上限限制。然后,我们将我们的在线学习框架扩展到多代理设置,在该设置中,多个车辆可适应和学习能量模型的参数。通过分析批处理反馈下的算法,我们分析了汤普森采样,并在单位代理和多代理设置中建立了严格的遗憾界限。最后,我们通过在几个现实世界的城市路网络上进行实验来演示方法的性能。
拓扑量子材料的独特电子性能,例如受保护的表面状态和外来的准粒子,可以提供带有垂直磁各向异性磁铁的外部无磁场磁力切换所需的平面自旋偏振电流。常规自旋 - 轨道扭矩(SOT)材料仅提供平面自旋偏振电流,而最近探索的具有较低晶体对称性的材料可提供非常低的平面自旋偏振电流组件,不适用于能量固定的SOT应用。在这里,我们使用拓扑WEYL半候选牛头牛Tairte 4具有较低的晶体对称性,在室温下在室温下表现出大型的脱离平面阻尼样SOT。我们基于Tairte 4 /ni 80 Fe 20异质结构进行了自旋 - 扭矩铁磁共振(STFMR)和第二次谐波霍尔测量,并观察到大型平面外阻尼样的SOT效率。估计平面外旋转大厅的构成为(4.05±0.23)×10 4(ℏ⁄ 2 e)(ωm)-1,这比其他材料中报道的值高的数量级。
就像在任何选举中一样,媒体在影响人们的投票偏好、政客的行为以及政党之间的权力动态方面发挥着至关重要的作用。在过去十年中,技术进步从根本上改变了政治沟通。社交媒体的兴起为政治参与者提供了众多选择,可以直接与选民沟通,影响他们的意见并与选民互动。虽然互联网在很大程度上使政治辩论民主化,但它也为那些试图通过虚假信息、操纵技术和宣传来操纵意见和辩论的邪恶参与者打开了大门。媒体继续受到这些变化的影响,其商业模式受到科技公司力量的破坏,其受众转向其他信息来源。尽管如此,新闻业仍然在传播组合中发挥着重要作用。
需要高生产率和鲁棒性提高的代谢工程,以使木质纤维素生物量的可持续生物生产乳酸。乳酸是一种重要的商品化学化学物质,例如作为可生物降解聚合物的聚乳酸生产的单体。在这里,使用有理和模型的优化来设计二倍体的木糖发酵酵母酿酒酵母菌株以产生L-乳酸。通过删除ERF2,GPD1和CYB2的多种乳酸脱氢酶编码基因,将代谢通量转向乳酸。使用木糖作为碳源实现了93 g/l的乳酸,其产率为0.84 g/g。增加了木糖利用并减少乙酸合成,还从菌株中删除了PHO13和ALD6。最后,编码丙酮酸激酶的CDC19过表达,导致消耗的0.75 g乳酸/g糖的产率,当使用的底物是一种合成木质纤维素水解培养基时,含有六糖和乙酸和固定剂等合成木质纤维素水解培养基。值得注意的是,建模还为理解氧气在乳酸产生中的影响提供了潜在客户。从木糖中产生高乳酸,在氧气限制下可以通过氧化磷酸化途径减少的通量来解释。在对比度上,较高的氧气水平对乳酸的产生有益于合成水解培养基的乳酸,这可能是耐受抑制剂所需的ATP浓度较高。这项工作突出了酿酒酵母对木质纤维素生物量产生乳酸的潜力。
推动是一项必不可少的非划算操作技能,用于任务,从预抓操作到场景重新排列,关于场景中的对象关系的推理,因此在机器人技术中广泛研究了推动动作。有效使用推动动作通常需要了解受操纵对象的动态并适应预测与现实之间的差异。出于这个原因,在文献中对推动作用进行了效果预测和参数估计。但是,当前方法受到限制,因为它们要么建模具有固定数量对象的系统,要么使用基于图像的表示,其输出不是很容易解释并迅速累积错误。在本文中,我们提出了一个基于图神经网络的框架,以根据触点或关节对对象关系进行建模,以效应预测和参数估计推动操作。我们的框架在真实和模拟环境中都得到了验证,这些环境包含不同形状的多部分对象,这些对象通过不同类型的关节和具有不同质量的对象连接,并且在物理预测上的表现优于基于图像的表示。我们的方法使机器人能够预测并适应其观察场景时推动动作的效果。它也可用于使用从未看过的工具进行工具操作。此外,我们在基于机器人的硬盘拆卸的背景下证明了杠杆起作的6D效应预测。
当今大多数产品都具有多个功能,但是这些功能是通过在系统中整合不同的单功能设备和/或材料来实现的。在一种单个材料中同时具有多个功能具有许多潜在的优势,例如一种可以存储能量,具有自感应或自我修复能力或任何其他身体功能的结构材料。这将带来质量和资源节省,使能源更高,因此更可持续。本文介绍了如何使用碳纤维的电气和电化学性质在高性能载荷中同时使用碳纤维来进行碳纤维的微型审查。通过该碳纤维复合材料还可以存储像锂离子电池一样的能量,用作应变传感器,具有电气控制的致动和形状,并用作能量收割机。