摘要 公共部门采用人工智能 (AI) 有可能改善服务交付。然而,与人工智能相关的风险很大,公民的担忧已经停止了多项人工智能计划。在本文中,我们报告了一项关于挪威公民对公共服务中使用人工智能的态度的实证研究的结果。我们发现了一种普遍积极的态度,并确定了促成这种态度的三个因素:a) 对政府的高度信任;b) 人类参与其中所带来的保证;c) 对流程、用于人工智能模型的数据和模型内部运作的透明度。我们通过社会契约理论的视角来解释这些发现,并展示了人工智能在公共服务中的引入如何受到社会契约权力动态的影响。我们的研究通过突出政府与公民的关系为研究做出了贡献,并对公共部门的人工智能实践产生了影响。
在过去的几十年中,描述化学结构的出版物数量稳步增加。然而,目前大多数已发表的化学信息在公共数据库中都无法以机器可读的形式获得。以更少的人工干预方式实现信息提取过程的自动化仍然是一个挑战——尤其是化学结构描述的挖掘。作为一个利用深度学习、计算机视觉和自然语言处理方面的最新进展的开源平台,DECIMER.ai(化学图像识别深度学习)致力于自动分割、分类和翻译印刷文献中的化学结构描述。分割和分类工具是同类中唯一公开可用的软件包,光学化学结构识别 (OCSR) 核心应用程序在所有基准数据集上都表现出色。这项工作中开发的源代码、训练模型和数据集均已在许可下发布。DECIMER Web 应用程序的一个实例可在 https://decimer.ai 获得。
研究了工艺气体、激光扫描速度和样品厚度对激光粉末床熔合制备的 Ti-6Al-4V 中残余应力和孔隙率形成的影响。使用纯氩气和氦气以及它们的混合物(30% 氦气)来建立残余氧含量低至 100 ppm O 2 的工艺气氛。结果表明,通过 X 射线衍射测得的薄样品(220 MPa)的亚表面残余应力明显低于长方体样品(645 MPa)。这种差异归因于较短的激光矢量长度,导致热量积聚,从而实现原位应力释放。即使增加了扫描速度,在工艺气体中添加氦气也不会在简单的几何形状中引入额外的亚表面残余应力。最后,在氦气下构建的悬臂(从底板移除后)的偏转比在氩气和氩气-氦气混合物下制备的悬臂的偏转更大。该结果表明,由于氦气的高热导率、热容量和热扩散率,在氦气下制造涉及大面积扫描的复杂设计可能受到更高的残余应力。
在过去的二十五年中,MAX 相及其衍生物 MXenes 已成为材料研究的焦点。这些化合物无缝融合了陶瓷和金属特性,具有高导热性和电导性、机械强度、低密度和耐极端条件性。它们的多功能性使其成为各种应用的有希望的候选材料,特别是在用于氢气释放的先进光催化和电催化中。此外,MAX 相和 MXenes 是潜在的储氢材料,具有独特的结构,可为高效的氢气储存和释放提供充足的空间,这对于燃料电池等清洁能源技术至关重要。本综述旨在全面分析它们在光催化、电催化和储氢中的作用,重点关注它们的层状晶体结构。MAX 相集成了优越的金属和陶瓷属性,而 MXenes 提供可调节的电子结构,可增强催化性能。持续探索对于充分发挥其潜力、推动清洁能源技术及其他领域至关重要。
当今大多数产品都具有多个功能,但是这些功能是通过在系统中整合不同的单功能设备和/或材料来实现的。在一种单个材料中同时具有多个功能具有许多潜在的优势,例如一种可以存储能量,具有自感应或自我修复能力或任何其他身体功能的结构材料。这将带来质量和资源节省,使能源更高,因此更可持续。本文介绍了如何使用碳纤维的电气和电化学性质在高性能载荷中同时使用碳纤维来进行碳纤维的微型审查。通过该碳纤维复合材料还可以存储像锂离子电池一样的能量,用作应变传感器,具有电气控制的致动和形状,并用作能量收割机。
()国家和国际重要性的时事(i)世界和印度CII的政治和物理分裂)印度的气候与农作物(IV)运输与传播。人口统计学 - 人口普查,其特征和重要统计数据(VI)(V)印度重要的河流和湖泊。(vii)印度经济。(vii)印度文化和遗产。印度历史特别提及自由运动。cix)印度宪法 - 基本特征 - 序言,基本权利,基本职责,国家政策科学技术的指令原则。(XI)环境,生态和生物多样性。(xii)(ii)印度的税收 - 直接和间接税-CBDT,GST等。
从经济角度来看,耐久性是热冲压模具的关键因素。通过沉积新材料而不是更换来翻新模具是一种降低成本的有效方法。为此,通过定向能量沉积的方式将一种新开发的马氏体时效钢 (NMS) 熔覆在热作工具钢上。经过优化的回火后,对熔覆的 NMS 进行高温暴露以检查抗软化性能。利用光学显微镜 (OM)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、俄歇电子能谱 (AES) 和透射电子显微镜 (TEM) 的组合,系统地表征了材料的微观结构演变。熔覆钢中的沉淀物被鉴定为 Laves 相。该相的粗化被认为是钢在高温下热软化的主要原因。还使用修订的 Langer-Schwartz-Wagner (LSW) 模型模拟了粗化行为,该模型与实验观察结果非常吻合。此外,成功应用了沉淀强化数学模型来评估钢的软化行为。该模型可用于预测所研究的工具钢在高温使用过程中的硬度/强度变化。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
本文对海浪能驱动的反渗透进行了分析。市售的海水淡化系统通过 DC/AC 转换器连接到可变 DC 电源,并改变输入电压以模拟可再生能源系统的响应。具体而言,使用了 2015 年肯尼亚基利海的波浪数据。波浪资源变化会导致波浪能转换器的估计功率输出以及波浪能驱动的海水淡化系统的估计淡水产量发生变化。对于基利海,研究了最多三个用于海水淡化的波浪能转换器。此外,还提出了一种包括太阳能和波浪能的混合系统。实验表明,反渗透海水淡化系统可以在低于额定值的功率水平下运行,但淡水流量较低。结论是,波浪能或波浪能与光伏系统相结合,可被视为海水淡化的电源,带或不带电池储存。