a 瑞典皇家理工学院,应用物理系,阿尔巴诺瓦大学中心,斯德哥尔摩,SE-114 21,瑞典 b 中子散射和成像实验室,保罗谢勒研究所,CH-5232,Villigen PSI,瑞士 c 纳米科学中心,尼尔斯玻尔研究所,哥本哈根大学,Nørre All e 59,DK-2100,哥本哈根 O,丹麦 d 都灵理工大学应用科学与技术系,Corso Duca Degli Abruzzi 24 10129,都灵,意大利 e 维也纳科技大学固体物理研究所,Wiedner Hauptstraße 8 e 10,1040,维也纳,奥地利 f 瑞典皇家理工学院 PDC 高性能计算中心,SE-100 44,斯德哥尔摩,瑞典 g Nordita,瑞典皇家理工学院和斯德哥尔摩大学,Hannes Alfv ens v € ag 12,SE-106 91,斯德哥尔摩,瑞典 h 东京大学固体物理研究所中子科学实验室,柏,千叶 277-8581,日本 i 东京大学跨尺度量子科学研究所,东京 113-0033,日本 j 高能加速器研究机构材料结构科学研究所,茨城 305-0801,日本 k 牛津大学无机化学实验室,牛津 OX1 3QR,英国 l 印度理工学院物理系,坎普尔 208016,印度 m 塔塔基础研究所 DCMPMS,孟买 400005,印度 n 查尔姆斯理工大学物理系,SE-412,哥德堡,瑞典
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
合成生物学和人工智能 (AI) 的进步为现代生物技术提供了新的机遇。高性能细胞工厂是工业生物技术的支柱,最终决定了生物基产品在与石油基产品的激烈竞争中是成功还是失败。迄今为止,合成生物学面临的最大挑战之一是以一致和高效的方式创建高性能细胞工厂。作为所谓的白盒模型,已经开发了许多代谢网络模型并将其用于计算菌株设计。此外,近年来,人工智能驱动的菌株工程取得了巨大进展。这两种方法都有优点和缺点。因此,人工智能与代谢模型的深度整合对于构建具有更高滴度、产量和生产率的优质细胞工厂至关重要。本综述总结了最新的先进代谢模型和人工智能在计算菌株设计中的详细应用。此外,还讨论了人工智能和代谢模型深度整合的方法。预计由人工智能驱动的先进机械代谢模型将为未来几年高效构建强大的工业底盘菌株铺平道路。
能源管理是适用于智能建筑物(SBS)的微电网(MGS)的主要挑战之一。因此,更多的研究是必不可少的,要考虑建模和操作方面,以利用系统的即将到来的不同应用程序。本文介绍了一种新型的能源管理建筑模型,该模型基于完整的监督控制和数据获取(SCADA)系统的职责,其中包括MG实验室(LAB)测试床,该模型在罗马萨皮恩扎大学的电气和能源工程系中名为Lambda。Lambda MG实验室以小规模A SB模拟,并与Dieee电网连接。lambda mg由光伏发电机(PV),电池能量存储系统(BESS),智能开关板(SW)以及不同的分类负载(关键,必不可少的和正常)组成,其中一些是可管理的且可控制的(照明,空调,空调,空调,智能插头)。Lambda实施的目的是使Diaee Smart用于节能目的。在Lambda实验室中,通信体系结构包括由两个主要国际标准(电气和技术监控系统的工业序列标准)和KONNEX(商业和家庭建筑自动化的开放标准)进行的大师/奴隶单位和执行器组成。使电气部门的智能原因从主电网中降低所需的电源。因此,为了实现目标,已经以两种模式进行了研究。最后,在不同的情况下对拟议的模型进行了研究,并从经济方面进行了评估。最初,基于SCADA系统的实时模式,该模式揭示了不同来源和负载的实际日常功耗和生产。接下来,将模拟零件分配给基于能量管理系统的主网格,负载和BES充电和放电的行为。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
能源弹性是能源政策和研究的重要焦点,因为能源系统正面临越来越多的挑战,例如由于可再生能源生产增加而导致的电力短缺,以及极端天气导致的停电风险。通常,在这些情况下,能源弹性侧重于基础设施和确保电力供应不受干扰。本文提出了一个关于弹性的补充观点,以家庭为研究弹性的起点。基于对多个学科弹性的理解,我们提出了家庭能源弹性的定义,可用于探索家庭如何在电力供应不稳定的情况下确保未来生活良好。此外,我们借鉴了能源富裕环境下未来家庭能源使用的当前想法(备用能源、能源效率、灵活性和能源自给自足),以创建一个探索家庭能源弹性的框架。我们发现不同想法之间存在多样性的潜力,而这种多样性并不总是存在于主流的未来能源使用愿景中。从家庭能源弹性的角度来看,我们希望挑战电力需求不可协商的观念,并揭示支持家庭在不确定的未来变得更具弹性的机会。
受气候缓解目标国家的驱动国家,全球大流行后的经济增长和恢复的低成本可再生能源的优先级。很明显,可疑的技术选择会导致更广泛的社会经济利益,这是在将其能源部门朝着更高份额的可再生能源份额过渡到更高份额的国家中所表明的。对更好地理解能源过渡对就业的直接影响的兴趣越来越大,对传统能源部门失去的工作的担忧将对世界各地的决策介绍至关重要。这项研究重点是加速可再生能源的净就业影响,该净摄入量将于2050年到2050年从可再生能源中获得100%的能源,与巴黎协议的雄心勃勃的目标兼容。与电力,热量,运输和脱盐部门相关的直接能源工作从2020年的约5700万增加到到2050年的近1.34亿。可再生能源和可持续技术中的价值链比采摘化石燃料更重要。结果表明,全球能源过渡将对世界各地经济的未来稳定和增长产生积极影响。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
结构电池复合材料属于类别的多功能材料,具有同时存储电能并承载机械负载的能力。在充当负电极时,碳纤维也充当机械增强。锂离子插入碳纤维中的含有6.6%的径向膨胀,轴向膨胀为0.85%。此外,碳纤维的弹性模量受锂插入的显着影响。当前的结构电池建模方法不考虑这些功能。在本文中,我们通过开发考虑有限菌株和锂浓度依赖性纤维模量的计算模型,研究碳纤维中锂插入对结构电极机械性能的影响。计算模型可以表示形态变化,从而预测可以预测诸如内部应力状态,均质的切线刚度以及由碳纤维静脉引起的电极的有效扩展。所采用的有限应变公式允许在不同的静态状态下持续考虑测量数据。采用有限应变公式的重要性也显示为数值。最后,通过实施一种新型的无应力膨胀方法,结果表明,结构电极的计算膨胀与实验中观察到的相似趋势。
我叫Kim Libera,我是地球科学家。我的宠物项目之一是研究替代方法,从苛刻的农药转移到更多的生物学或非致命的机械陷阱中。我主张,我们从用来用作农药的任何苛刻的有毒化合物迁移出来,这是两个原因。原因是这些化合物,它们是我们可以考虑的最有毒的化合物之一,它可以沿食物链旅行,我当然不希望它们进入野生动植物,饮用水或花园土壤。原因二,这些有毒化合物很有可能导致各种癌症和神经系统疾病。我的前同学,其家庭从事农药/杀虫剂业务的工作受到淋巴瘤困扰。我想尽我所能保护野生动植物。我敦促国家和深处思考开箱即用并迁移到更多的生物学手段。这种方法可能包括降解的化合物,例如肥皂/油,硅藻土,机械陷阱,基因工程。我提供了一个在英国使用的示例,他们使用梗和贝赛猎犬和水獭来应对害虫。一家名为Oxitec的公司正在通过基因工程来解决瘟疫昆虫物种,以减少数量。中欧通过消除宿主作为目标来消除野生动植物中的狂犬病。这被称为“思考”开箱即用。