taas是第一个实验发现的Weyl半分材料,由于其高载流子迁移率,高各向异性,非磁性特性以及与光的强烈相互作用,引起了很多关注。这些使其成为研究量子计算,热电设备和光电检测中Weyl Fermions和应用的理想候选者。迫切需要进行进一步的基本物理研究和潜在的应用,大尺寸和高质量的TAAS漏洞。然而,由于AS在生长过程中的挥发,生长出色的taas纤维很难。为了解决这个问题,我们尝试使用脉冲激光沉积(PLD)使用具有不同AS化学计量比的靶标在不同底物上生长TAAS漏洞。在这项工作中,我们发现在生长过程中,部分作为GAAS底物的离子可能会扩散到TAAS纤维中,这是由结构表征,表面地形和组成分析最初确认的。结果,提高了TAAS纤维中的AS含量,并实现了TAAS相。我们的工作提出了一种使用PLD制造TAAS漏洞的有效方法,从而使Weyl SemimetalFim可以用于功能设备。
在补充图2中,我们与主要文本中图8的PL结果进行了补充,其中的SIMS深度剖面是碳,氧气和氢的样品,这些含量已接收了两种激光 - 离子脉冲。SIMS深度曲线是在PL光谱较早采集的样品中的同一区域中采用的。我们观察到质子辐照的G-中心横梁斑点区域外的质子辐射,该区域已被铝箔覆盖,A)。在碳浓度升高的区域中,我们看到的W-中心具有狭窄的线宽分布和G-Centers的分布扩展,b)。热预算和离子通量最高的区域显示W-Center合奏,线宽略有宽,c)。来自高通量区域(C)的SIMS轮廓的形状表明由于去角质的发作,表面粗糙度增加。
摘要 利用反应脉冲直流磁控溅射技术进行了一项实验研究,探索了在 623 K (± 5K) 下沉积的半导体氧化钇薄膜的光谱和结构特性。根据 x 射线衍射和透射电子显微镜测量的结果,一氧化钇很可能在 β-Y 2 O 3 和 α-Y 2 O 3 之间的过渡区中形成,并伴有晶体 Y 2 O 3 。由于 4d 和 5s 轨道之间的能量分离低和/或相应轨道亚能级的自旋状态不同,一氧化物的稳定性在热力学意义上最有可能受晶体大小的自身限制。与金属氧化物立方结构相比,这种行为会导致晶体结构扭曲,并且还会影响纳米晶/非晶相的排列。此外,椭圆偏振光谱法表明半导体氧化钇的形成特征比结晶的 Y 2 O 3 更显著,且大多为非晶态。我们的目的是利用目前的研究结果,加深对不寻常价态 (2+) 钇的形成动力学/条件的理解。
•ECE,CSE&IT部共同组织了一门学分/增值课程,标题为“ IoT Security”与印度钦奈的Ford Motors Private Limited联合。该课程由企业网络咨询和咨询服务总经理Nambivengadam Srinivasan先生,福特全球商业服务和Subramanian KM先生,福特全球商业服务的网络安全顾问Subramanian KM,Chennai,Chennai,泰米尔纳德邦,泰米尔纳德邦,泰米尔纳德邦,2022年10月31日至11月11日,泰米尔纳德邦。
截至 2022 年底,共有 146 家金融科技公司被认定为在拉脱维亚拥有法人实体或运营。这一数字占拉脱维亚初创企业总数的五分之一以上,毫无疑问地证明了金融科技是波罗的海中心创新的明显基石。拉脱维亚的金融科技公司涵盖了从支付和贷款到加密货币和众筹等广泛的行业。除了分析数据之外,我们可以假设,初创企业的密度和范围进一步证明了创新者之间的合作(而不是竞争),加上有益的基础设施和监管框架,是促进创新公司成长和进一步提升拉脱维亚作为成熟金融科技中心形象的积极因素。
脉冲时间的影响是我们了解如何有效调节基底神经节丘脑皮质 (BGTC) 回路的重要因素。通过电刺激丘脑底核 (STN) 产生的单脉冲低频 DBS 诱发电位可以洞察回路激活,但长延迟成分如何随脉冲时间的变化而变化尚不清楚。我们研究了在 STN 区域传递的刺激脉冲之间的时间如何影响 STN 和皮质中的神经活动。在五名帕金森病患者的 STN 中植入的 DBS 导线被暂时外化,从而可以传递脉冲间隔 (IPI) 为 0.2 至 10 毫秒的成对脉冲。通过 DBS 导线和头皮 EEG 的局部场电位 (LFP) 记录来测量神经激活。 DBS 诱发电位是使用通过联合配准的术后成像确定的背外侧 STN 中的接触器计算的。我们使用小波变换和功率谱密度曲线量化了不同 IPI 对跨频率和时间的诱发反应幅度的影响程度。STN 和头皮 EEG 中的 DBS 诱发反应的 β 频率内容随着脉冲间隔时间的增加而增加。间隔 < 1.0 ms 的脉冲与诱发反应的微小变化相关。1.5 到 3.0 ms 的 IPI 使诱发反应显著增加,而 > 4 ms 的 IPI 产生适度但不显著的增长。当 IPI 在 1.5 到 4.0 ms 之间时,头皮 EEG 和 STN LFP 反应中的 β 频率活动最大。这些结果表明,DBS 诱发反应的长延迟成分主要在 β 频率范围内,并且脉冲间隔时间会影响 BGTC 电路激活的水平。
OFDM(正交频分多路复用)正交频分多路复用(OFDM)用于将高速率数据流拆分为低率流,该流在许多子载体上同时传输。使用移动通信的人数不断增加,这引起了移动网络的关注。增加所涵盖的区域,数据吞吐量以及移动网络中的服务质量是一个主要问题。结果,在这方面,移动通信系统必须非常有效。要满足用户不断增长的需求,必须大大扩展当前系统。多个载波频率用于使用正交频段多路复用(OFDM)来编码数字数据。OFDM有多种用途,包括数字电视和音频传输,高速DSL Internet访问,无线网络,电源线网络和第四代移动通信。功能:❖多载波变速箱❖针对多路径褪色的鲁棒性❖频段宽度按需技术❖光谱效率
摘要 纠缠是量子网络中的通用资源,但纠缠光子源通常是为特定用例定制的。多功能性(包括状态调制和光子时间特性的可调谐性)是灵活网络架构和加密原语的关键,这些原语超越了量子密钥分发。本文,我们报告了一种灵活的源设计,可在连续波和 GHz 速率脉冲操作模式下产生高质量纠缠。利用现成的光学元件,我们的方法使用基于光纤的 Sagnac 环以高效率和高于 0.99 的保真度在电信波长下产生偏振纠缠光子。在产生纠缠态之前,高达 GHz 的相位调制也是可能的,以实现快速纠缠态切换。我们展示了 100 MHz 的相位调制,平均保真度为 0.95。此外,源 60 nm 光谱带宽与完全可重构的波长复用量子网络完全兼容。
评估了使用脉冲 keV 离子束在透射几何中对薄膜和准二维系统进行灵敏的多元素分析的飞行时间反冲检测的潜力。虽然飞行时间方法允许同时检测多种元素,而最大程度上不受反冲电荷状态的影响,但 keV 射弹能量可保证高反冲截面,从而在低剂量下获得高灵敏度。我们展示了该方法的能力,使用 22 Ne 和 40 Ar 作为射弹,穿过具有可选 LiF 涂层和单晶硅膜的薄碳箔,以用于不同的样品制备程序和晶体取向。使用大型位置灵敏探测器(0.13 sr),深度分辨率低于 6 nm,灵敏度低于 10 14