O. Grulke 1,25,,∗,C.Albert 2,J.A。K. Aleynikova 1 , AL Alonnikova 3 , G. Anda 4 , T. Andreeva 1 , M. Arvanitou 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1,E。Ascasibar3 3 5 5,48 4,J.-P。是Bähner6,S.-G。 Baek 6,M。Balden7,JBosch 1,10,H。Bouvain 1,St. Bride 1,T。错误1,H。Braune 1,C。 Büschel1,R。Bussiahn1,A。Bus4,B。12,D。Casta Coenen 11,G。Conway7,M。Cornelissen1,27,Y。Corre14,P。 这座城堡7,G。Csymic11,H。Grandfather1,R.J。 Davies 1,C。第16天,S。Discover 1,R。of Wolf 17,W。Decker 17,A。Despontin 9,P。Despontin 15,C.P。 Dhard 1,A。Dinkle 1,18,F.A。 ISA 19,T。 首先22,F.J。Escot 3,M.S。 特殊1,10,T。Strawberry 3,D。Fehling 8,L。Feuerstein 16,J。Fellinger 1,Y。Felg 1,D.L.C。 Fernand 7,St.Fisher 1,E.R。 O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。Bosch 1,10,H。Bouvain 1,St. Bride 1,T。错误1,H。Braune 1,C。Büschel1,R。Bussiahn1,A。Bus4,B。12,D。CastaCoenen 11,G。Conway7,M。Cornelissen1,27,Y。Corre14,P。 这座城堡7,G。Csymic11,H。Grandfather1,R.J。 Davies 1,C。第16天,S。Discover 1,R。of Wolf 17,W。Decker 17,A。Despontin 9,P。Despontin 15,C.P。 Dhard 1,A。Dinkle 1,18,F.A。 ISA 19,T。 首先22,F.J。Escot 3,M.S。 特殊1,10,T。Strawberry 3,D。Fehling 8,L。Feuerstein 16,J。Fellinger 1,Y。Felg 1,D.L.C。 Fernand 7,St.Fisher 1,E.R。 O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。Coenen 11,G。Conway7,M。Cornelissen1,27,Y。Corre14,P。这座城堡7,G。Csymic11,H。Grandfather1,R.J。 Davies 1,C。第16天,S。Discover 1,R。of Wolf 17,W。Decker 17,A。Despontin 9,P。Despontin 15,C.P。Dhard 1,A。Dinkle 1,18,F.A。ISA 19,T。首先22,F.J。Escot 3,M.S。 特殊1,10,T。Strawberry 3,D。Fehling 8,L。Feuerstein 16,J。Fellinger 1,Y。Felg 1,D.L.C。 Fernand 7,St.Fisher 1,E.R。 O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。首先22,F.J。Escot 3,M.S。特殊1,10,T。Strawberry 3,D。Fehling 8,L。Feuerstein 16,J。Fellinger 1,Y。Felg 1,D.L.C。Fernand 7,St.Fisher 1,E.R。 O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。Fernand 7,St.Fisher 1,E.R。O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。Flom 9,O。Ford1,T。Fornal 23,J。Frank 1,10,9,G。García-Rega Grahl 1,H。Green 7,E。Grigore 50,M。Cruise 23,J.F。García-Rega Grahl 1,H。Green 7,E。Grigore 50,M。Cruise 23,J.F。战争Arnaiz 1,V。Haak1,L。VanHam 1,K。Hammond26,B。Momstra27,X。Han 9,S.K。 Hansen 6,Harris 8,D。Hartmann 1,D,K。Hophler 7,St.Hoermann 7,42,K.-P。所有第51,A。Holtz 1,D。应该11,M。Houry 14,J。Huang 11,M。Hubeny 11,K。Hunger 7,D。Hwangbo 45 45 45 45 45 45 45 45 45 45 45,K。Ida,Z Jouna,Z Jouna 15,St.-Stair 30,J.-P。 Kamionka 1,W。Caspare49,C。Cawan11,Ye。 Kharwandikar 1,M。Khokhlov1,C Klepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,J CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,战争Arnaiz 1,V。Haak1,L。VanHam 1,K。Hammond26,B。Momstra27,X。Han 9,S.K。Hansen 6,Harris 8,D。Hartmann 1,D,K。Hophler 7,St.Hoermann 7,42,K.-P。所有第51,A。Holtz 1,D。应该11,M。Houry 14,J。Huang 11,M。Hubeny 11,K。Hunger 7,D。Hwangbo 45 45 45 45 45 45 45 45 45 45 45,K。Ida,Z Jouna,Z Jouna 15,St.-Stair 30,J.-P。 Kamionka 1,W。Caspare49,C。Cawan11,Ye。 Kharwandikar 1,M。Khokhlov1,C Klepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,J CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,Hansen 6,Harris 8,D。Hartmann 1,D,K。Hophler 7,St.Hoermann 7,42,K.-P。所有第51,A。Holtz 1,D。应该11,M。Houry 14,J。Huang 11,M。Hubeny 11,K。Hunger 7,D。Hwangbo 45 45 45 45 45 45 45 45 45 45 45,K。Ida,Z Jouna,Z Jouna 15,St.-Stair 30,J.-P。 Kamionka 1,W。Caspare49,C。Cawan11,Ye。Kharwandikar 1,M。Khokhlov1,C Klepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,J CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,Kharwandikar 1,M。Khokhlov1,CKlepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,J CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,Klepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,JCRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。Laqua 1,18,M.R。 Larsen 25,Laqua 1,18,M.R。Larsen 25,Larsen 25,Cuczy 1,D。Klalla1,A。Kumar34,T。Kurki-Suonio 32,I。Kawk35,S。Kwak1,V。Lancetti15,A。Langenberg1,H。Laqua1,H.P。
世界各国政府都在加大力度,以促进本国的航天技术产业和经济发展。许多国家都已实施举措,优先考虑航天领域的创新,并鼓励、支持和简化商业伙伴关系。从政府和私营公司合作的增加,到韩国成立韩国航空航天局 (KASA) 和日本实施 10 年基金以加速航天业务发展和研发等里程碑式的举措,人们越来越认识到航天行业的经济潜力及其在全球舞台上推动创新和竞争力的作用。
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
总结本报告比较了最终预算经济和财政更新2024(BEFU)财政预测的总财政冲动(TFI)指标的结果与指示性的最终BEFU预测以及半年经济和财政更新2023(HYEFU)的预测。关于总财政冲动指标的背景,TFI是政府对总收入需求的财政贡献的衡量标准,从一年到下一年到下一年。TFI定义为“财政余额”的年度变化,这是核心皇冠和皇冠实体剩余现金盈余或赤字,不包括一些不直接影响总需求的项目。1积极的TFI意味着财政政策相对于上一年的总需求贡献更多,反之亦然,但它没有提供有关政策是绝对术语的策略是扩张或收缩的信息。TFI可以粗略地表明财政政策可能对经济的影响。然而,因为它只是衡量了一年到下一年之间的财政余额差异,因此它容易受到数年之间的支出和收入概况变化引起的大规模变化。整个预测期间的平均TFI提供了对财政立场的更完整度量,并且在给定年份中比TFI更重要。平均值可以更好地衡量财政政策的整体宏观经济立场,即政府支出和收入如何在预测期内造成通货膨胀压力和利率的影响。
脉冲电场(PEF)是一种食品加工技术,基于电穿孔现象,用于灭活微生物,主要优势对食品产品的质量(营养,功能和感官)特征的最小影响。尽管有关PEF处理的食品安全的大量研究文献,但PEF作为经典巴氏灭菌的替代方案仍有限,并且主要在工业水平上集中在高酸性液体食品上。因此,对PEF的抗菌效率进行了彻底评估,再加上对关键微生物耐药机制的细致鉴定,这是迫切的。这些努力对于通过协同的集成和与其他方法或/和/和障碍结合结合来完善过程和探索潜在的增强至关重要。在此基础上,此MANU脚本旨在批判性地审查和总结:a)抗菌作用机理,b)微生物失活效率以及c)PEF在微生物基因组/转录组水平上的影响。工业应用:评估失活和理解潜在的抵抗机制的有效性可以帮助制定优化PEF介导的净化实践的策略,从而提高整体过程效率。
半导体的飞秒激光处理已演变为成熟的高精度制造技术,从而实现了广泛的应用。最初大多数研究都采用了近乎红外波长的脉冲,但由于不同的激发条件,由于较短的光学渗透深度,因此使用紫外线激光脉冲的兴趣正在不断增加,从而导致分辨率提高。在这种情况下,为了理解和最终控制复杂的相变途径,需要对这种脉冲触发的相变的时间动力学进行基础研究。在这里,我们报告了一项详细的时间分辨研究,以使用单个400 nm,100 fs激光脉冲在中等和高激发方向进行辐照后,晶体硅和锗的相变动力学。为此,我们采用了FS分辨的光学显微镜,探头波长为800 nm,以研究辐照表面的反射率演变,范围从100 fs到20 ns,范围为100 fs。在中等激发的情况下,数据揭示了激光诱导的过程的整个序列,从产生自由电子等离子体,非热融化,消融和半透明消融层的膨胀层的扩展。在峰值流体的激发时超过30倍消融阈值,观察到异常的瞬态高反射率态,这可能表明了后坐压力诱导的液体 - 液相相变。 此外,在中度的辐射后,两种材料形成了70 nm厚的无定形表面层。超过30倍消融阈值,观察到异常的瞬态高反射率态,这可能表明了后坐压力诱导的液体 - 液相相变。此外,在中度的辐射后,两种材料形成了70 nm厚的无定形表面层。总体而言,我们的结果提供了有关FS-Pulse激发在近绿色波长范围内两种材料的最终状态的相关信息。
摘要量子计算机的效用高度取决于可靠执行准确的量子逻辑操作的能力。为了找到最佳的控制解决方案,探索无模型方法的质量不受量子处理器的理论模型的有限准确性的限制,这是特别感兴趣的,与许多既定的门实现策略相反。在这项工作中,我们利用一种连续的控制加强学习算法来设计纠缠两倍的门,用于超导量子。具体而言,我们的代理构建了交叉谐振和CNOT门,而没有任何有关物理系统的任何事先信息。使用固定频率固定耦合式旋转矩的模拟环境,我们证明了产生新型脉冲序列的能力,以胜过标准的交叉谐振门,同时保持了对随机单位噪声的可比敏感性。我们进一步展示了培训和输入信息中的增强,使我们的代理商可以使其脉冲设计能力调整以漂移硬件特性,但很少有几乎没有其他优化。我们的结果清楚地表现出了基于Transmon Gate Design的基于自适应反馈学习的优化方法的优势。
©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
本文探讨了脉冲激光沉积 (PLD) 透明导电氧化物 (TCO) 在高质量超薄多晶硅基钝化接触上的适用性。通过减小多晶硅层厚度,可以最大限度地减少多晶硅层引起的寄生吸收。然而,多晶硅触点上的 TCO 沉积(通常通过溅射)会导致严重的沉积损伤,并进一步加剧较薄多晶硅层(<20 纳米)的表面钝化。虽然可以使用高温(约 350 摄氏度)热处理来部分修复表面钝化质量,但由于在多晶硅/ITO 界面形成了寄生氧化层,接触电阻率严重增加。或者,我们表明 PLD TCO 可用于减轻超薄(约 10 纳米)多晶硅层的损伤。通过增加沉积压力可以进一步改善多晶硅触点钝化,同时通过在高质量超薄多晶硅(n+)触点上使用 PLD 掺杂铟的氧化锡 (ITO) 层可实现低触点电阻率(约 45 m Ω cm 2)和良好的热稳定性(高达 350 °C)。通过将 PLD ITO 膜的出色光电特性与 10 nm 薄多晶硅触点相结合,可以实现高度透明的正面触点。