限制脉冲潜在产量的主要限制因素包括除了社会经济因素以外的脉冲生长区域中普遍存在的生物和非生物应力。在生物胁迫中,与根腐病配合物相结合的镰刀菌可能是最广泛的疾病,除了干根腐烂和锁骨腐烂外,还会造成鹰嘴豆的巨大损失。虽然镰刀菌,无菌性摩西和植物疫病会导致鸽子,黄色马赛克,尾虫叶斑,粉状霉菌和叶片皱纹和叶片造成大量损失,并在Vigna作物(Mungbean和Urdbean)中造成了相当大的损害。在鹰嘴豆和鸽子中的革兰氏荚虫(Helicoverpa Armigera)中,岩豆和鸽子中的革兰氏pod虫,木豆中的豆荚在乌尔德比恩和蒙比e造成严重损害各自的作物的豆荚,粉丝,粉丝,jassids和thrips。bruchids是储存的脉冲晶粒中最严重的害虫,在管理中需要最高优先级。杂草也会大大损失脉冲。最近,线虫已成为许多地区成功种植脉冲的潜在威胁。
摘要通过极端超紫罗兰(XUV)attosecond激光脉冲对原子或分子的光电离,需要仔细考虑来自光电离过程导致的离子 +光电子纠缠程度。在这里,我们考虑通过the骨的attosent激光脉冲对中性H 2的光电离心引起的相干H 2 +振动动力学。我们表明,chi脚的激光脉冲导致离子 +光电子纠缠以及从纯状态到混合状态的过渡。这种过渡的特征是评估纯度,对于转换限制的attosent激光脉冲而言,它接近统一性,并降低到由在光电离过程中填充的振动态数确定的值,以增加chirp参数的值。在计算中,通过用短的超紫色(UV)激光脉冲计算H 2 +阳离子的时间延迟解离来探测振动动力学。独立于chirp的大小,可以通过记录XUV-UV延迟依赖性动能与随附的光电子的动能,从而恢复相干的振动动力学。
尽管有破纪录的设备,但人们对钙钛矿太阳能电池的界面仍然了解甚少,这阻碍了进一步的发展。它们的混合离子-电子性质导致界面处的成分变化,这取决于外部施加偏压的历史。这使得难以准确测量电荷提取层的能带排列。因此,该领域通常采用反复试验的过程来优化这些界面。当前的方法通常是在真空和不完整的电池中进行的,因此值可能无法反映工作设备中的值。为了解决这个问题,开发了一种脉冲测量技术,用于表征功能设备中钙钛矿层上的静电势能降。该方法重建了一系列稳定偏压的电流-电压 (JV) 曲线,在随后的快速电压脉冲期间保持离子分布“静态”。观察到两种不同的状态:在低偏压下,重建的 JV 曲线呈“s 形”,而在高偏压下,则返回典型的二极管形曲线。使用漂移扩散模拟,证明了两种状态的交集反映了界面处的能带偏移。这种方法有效地允许在照明下测量完整设备中的界面能级排列,而无需昂贵的真空设备。
摘要 - 我们提出了一种通用方法,可以在校准少量参考脉冲后快速生成任何连续参数化的量子门集的高效果控制脉冲。我们发现,用于不同量子操作的优化对照脉冲之间插值不会立即产生高限度的中间操作。为了解决此问题,我们提出了一种方法来优化控制脉冲以提供良好的插值。我们选择了感兴趣的门家族中的几个参考操作,并优化实施这些操作的脉冲,然后迭代地重视脉冲以指导其形状,以使其形状相似,以与密切相关的操作相似。一旦对此参考脉冲进行了校准,我们可以使用直接的线性插值方法立即获得连续操作空间中任意门的高层脉冲。我们在两分门的三参数cartan分解上演示了此过程,以获得具有始终高填充性的任何任意两级栅极(直至单量子操作)的对照脉冲。与以前的神经网络方法相比,该方法是7.7倍,在计算上有效,以校准所有单量门门集的脉冲空间。我们的技术概括为任何数量的门参数,可以轻松地与先进的脉冲优化算法一起使用,从而可以更好地从模拟转换为实验。
摘要:受自然发生的调节机制的启发,这种机制允许在基因表达和生物途径中实现具有可编程延迟的复杂时间脉冲特征,我们在此展示了一种在基于 DNA 的链置换反应 (SDR) 中实现时间编程脉冲输出信号的策略。为了实现这一点,我们合理设计了输入链,一旦与目标双链结合,就可以逐渐降解,从而产生脉冲输出信号。我们还设计了阻断链,以抑制链置换并确定产生脉冲反应的时间。我们表明,通过控制阻断链和输入链的降解率,我们可以在 10 小时的范围内精细地控制延迟脉冲输出。我们还证明,通过利用输入链和阻断链的降解反应的特异性,可以在同一溶液中正交延迟两种不同的脉冲反应。最后,我们在此展示了这种延迟脉冲 SDR 的两种可能应用:DNA 纳米结构的时间编程脉冲装饰以及基于 DNA 的图案的顺序出现和自擦除形成。
Terahertz(THz)辐射覆盖了约0.1至30 THz的范围。它在基础研究和未来应用中拥有巨大的希望,1,2,因为THZ频率范围与物质的所有阶段,即等离子体,气体,液体和固体相吻合。3,例如,THZ辐射可以共同引起传导 - 电子传输,等离子体,激子,库珀对,Phonons或镁元。4因此,THZ光谱是研究广泛材料中基本过程的强大工具。thz辐射不仅是一种探针:高振幅THZ来源的发展可以控制物质5-7的集体激发,例如8-11的磁铁中的磁子或驾驶phonons。目前,THZ电场在台式系统中达到1 mV/cm的峰值强度,并且在大规模用户设施(例如自由电子激光器)中超过10 mV/cm。17在激发脉冲激发时,最近观察到了物质的不同阶段(例如,拓扑,磁性和结构)之间的超快切换。8,18–25 THZ激发也可以与其他良好的实验探针(例如角度分辨光发射光谱,26个扫描隧道显微镜,27-29或X射线衍射)结合使用。30,31将THZ光谱与如此强大的
文献中,较小的间距可预期较高的剪切强度。事实上,在之前关于飞秒激光粘合两层 PMMA 层的研究 [20] 中发现,每次激光通过产生的缺陷和空隙都会被下一条激光线产生的熔融材料填充。因此,增加连续激光线之间的重叠可提高焊接强度。相反,在我们的案例中,当激光束经过之前产生的激光修改线时,即当 h/w < 1 时,可以注意到剪切强度的降低。该结果可以归因于 PMMA 和硅之间的锚定“断裂”,这是由于激光在已经加工好的线上扫描造成的。另一方面,增加间距对剪切应力有负面但不太明显的影响。这可能