相干电子位移是处理量子信息的一种传统策略,因为它能够将原子网络中的不同位置互连。处理的效率依赖于对机制的精确控制,而这种机制尚未建立。在这里,我们从理论上展示了一种新方法,即利用阿秒单周期脉冲,在比电子波包动态扭曲更快的时间尺度上驱动电子位移。这些脉冲的特征依赖于向电子传递巨大的动量,导致其沿单向路径位移。通过揭示编码量子叠加态的位移波包的时空性质,说明了这一场景。我们绘制出相关的相位信息,并从原点远距离检索它。此外,我们表明,将一系列这样的脉冲应用于离子链,能够以阿秒为单位控制电子波包在相邻位置之间来回相干运动的方向性。扩展到双电子自旋态证明了这些脉冲的多功能性。我们的研究结果为使用阿秒单周期脉冲对量子态进行高级控制建立了一条有希望的途径,为超快速处理量子信息和成像铺平了道路。
摘要在这项研究中,证明了以100 Hz运行的高能量,暂时形状的皮秒紫外线(UV)激光,其脉冲通过级联的再生和双pass型级增长量增强至120 MJ,从而增加了10 8的增长。具有精确的操作和优化,放大激光脉冲是时间和空间结构域中的平流,以维持高纤维效果,这显着提高了随后的第三次谐波(THG)的转换效率(THG)。最后,在355 nm处获得91 MJ,470 ps脉冲,对应于高达76%的转化率效率,据我们所知,这是高重复速率率Picsecond Laser的最高效率。此外,紫外线激光器的能量稳定性优于1.07%(均方根),这使该激光成为包括激光调理和微型制作的各种领域的有吸引力的来源。
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
半导体的飞秒激光处理已演变为成熟的高精度制造技术,从而实现了广泛的应用。最初大多数研究都采用了近乎红外波长的脉冲,但由于不同的激发条件,由于较短的光学渗透深度,因此使用紫外线激光脉冲的兴趣正在不断增加,从而导致分辨率提高。在这种情况下,为了理解和最终控制复杂的相变途径,需要对这种脉冲触发的相变的时间动力学进行基础研究。在这里,我们报告了一项详细的时间分辨研究,以使用单个400 nm,100 fs激光脉冲在中等和高激发方向进行辐照后,晶体硅和锗的相变动力学。为此,我们采用了FS分辨的光学显微镜,探头波长为800 nm,以研究辐照表面的反射率演变,范围从100 fs到20 ns,范围为100 fs。在中等激发的情况下,数据揭示了激光诱导的过程的整个序列,从产生自由电子等离子体,非热融化,消融和半透明消融层的膨胀层的扩展。在峰值流体的激发时超过30倍消融阈值,观察到异常的瞬态高反射率态,这可能表明了后坐压力诱导的液体 - 液相相变。 此外,在中度的辐射后,两种材料形成了70 nm厚的无定形表面层。超过30倍消融阈值,观察到异常的瞬态高反射率态,这可能表明了后坐压力诱导的液体 - 液相相变。此外,在中度的辐射后,两种材料形成了70 nm厚的无定形表面层。总体而言,我们的结果提供了有关FS-Pulse激发在近绿色波长范围内两种材料的最终状态的相关信息。
K β x 射线发射光谱是分析 3 d 过渡金属系统电子结构及其超快动力学的有力探针。选择性增强特定光谱区域将提高这种灵敏度并提供全新的见解。最近,我们报道了使用 x 射线自由电子激光观察和分析了 Mn 溶液中 K α 放大的自发 x 射线发射以产生 1 s 芯空穴粒子数反转 [Kroll 等人,Phys. Rev. Lett. 120,133203 (2018) ]。要将这种新方法应用于化学上更敏感但更弱的 K β x 射线发射线,需要一种机制来胜过 K α 发射的主导放大。本文报告了使用两种颜色的 x 射线自由电子激光脉冲对 NaMnO 4 溶液中种子放大 K β x 射线发射的观察结果,一种用于产生 1 s 核心空穴粒子数反转,另一种用于种子放大 K β 发射。将观察到的种子放大 K β 发射信号与相同立体角中的传统 K β 发射信号进行比较,我们获得了超过 10 5 的信号增强。我们的发现是增强和控制 K β 光谱选定最终状态的发射的第一步,可应用于化学和材料科学。
在各种应用中都使用了稳定的具有较大脉冲能量和峰值功率的稳定的固态脉冲激光源,从基础研究到工业材料加工,医学和电信[1-3]。使用饱和吸收器(SA)生成脉冲激光器已成为当今最受欢迎的方法。近年来,由于成功地应用石墨烯而刺激了许多具有分层结构的二维(2D)材料,因为它们具有超快速恢复时间,可宽带饱和吸收和简单制造过程的优势,因此已重新发现了有前途且有趣的SA材料[4-7]。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> tinse友好型材料,由于其独特的特性,低毒性,低毒性和低成本和低成本和低成本[8,9],对通信,微电子,激光和非线性光学领域引起了广泛关注。由于具有可调的带隙特性,SNSE 2具有明显的宽带饱和吸收特性。几层和大散装SNSE2的间接带隙范围从1.07(〜1159 nm)到1.69 eV(〜734 nm),分别对应于1.84至2.04 eV的直接频段范围[10]。几层SNSE 2的间接带隙表示在1μm下可饱和吸收剂的能力。 Cheng等人在2017年首次报道了多层SNSE 2在1μm处的非线性光学特性,这是一种基于SNSE 2 -SA的被动Q开关波导固态激光器,其最小脉冲宽度为129 ns,脉冲宽度为129 ns,脉冲能量为6.5 NJ [10]。在2018年,Zhang等人。在2018年,Zhang等人。报告了基于SNSE 2 -SA [11]的高功率被动Q开关的YB掺杂纤维激光器。到目前为止,SNSE 2的非线性光学响应已通过不同波段的Q开关或模式的激光器进行了广泛研究[12-15]。但是,对固态激光器中SNSE 2的脉冲调制特征的研究还不够。
快速发展的现代光通信系统需要小型电光器件,其光学特性需要能够大幅度快速变化。这种纳米级器件可以用作数据存储或片上数据链路的光互连。[1] 在过去的几十年中,基于量子阱结构的电吸收 (EA) 调制器已被提出在高速光网络中发挥特别有前景的作用。[2,3] 利用量子限制斯塔克效应 (QCSE),这些材料的光学特性可以通过沿限制轴的外部电场进行调制,即通过倾斜势阱。由于这种“倾斜”的价带和导带,相关的最低能量电子和空穴波函数将定位在势阱的相对侧,从而导致带隙附近的吸收光谱发生变化。这种场诱导调制的典型特征是波函数之间的重叠积分降低,相关光学跃迁的振荡器强度降低,以及跃迁能量降低,这表现为吸收带边缘红移。[4–6]
摘要:我们报告称,通过将市售的 Ti:Sapphire 飞秒、1 kHz 激光系统与光参量放大器 (OPA) 相结合,实现了近 50% 的高转换效率。对于 1 kHz 和 35 fs 持续时间的 2.2 mJ/脉冲的输入能量,在信号波长为 1310 nm 时,信号加上闲置脉冲的总 OPA 输出能量为 1.09 mJ/脉冲。我们发现,由于 OPA 中的高增益饱和,输出光束轮廓几乎是平顶的。利用信号脉冲,我们在气体中产生高次谐波,并测量从氩气中电离的光电子的速度图图像与信号波长的关系。我们观察到,在高次谐波光子能量的特定范围内,在低动能区域观察到四倍光电子角结构。我们的结果表明,具有高转换效率OPA和超高斯光束轮廓的输出脉冲可用于需要在极紫外区域产生可调谐高次谐波的实验。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月5日。 https://doi.org/10.1101/2025.03.03.03.641170 doi:Biorxiv Preprint
对于工业应用而言,工艺总成本通常是限制超短脉冲激光系统广泛应用的因素。除此之外,产量是该技术成功实施的关键因素,产量不仅要求工艺优化,还与激光系统的平均功率成正比。因此,过去通常要求更高的平均功率。但如今,能够全天候运行的工业用超短脉冲激光系统提供高达 200 W 的平均功率,而研究开发则超过了 kW 级。例如在 2018 年,相干组合超快光纤激光器证明了其平均功率为 3.5 kW,脉冲持续时间为 430 fs,重复率为 80 MHz [5],最近这一值已被突破,达到 10.4 kW 的平均功率 [6],脉冲能量约为 130 µJ,脉冲持续时间更短,为 254 fs。使用盘式放大器可以在较低的重复频率下实现更高的脉冲能量,例如,在 [7] 中,对于脉冲持续时间为 1 ps 的脉冲,在重复频率为 2 kHz 时,脉冲能量为 97.5 mJ。使用 innoslab 技术 [8] 也可以实现高平均功率,早在 2010 年,就已证明了在重复频率为 20 MHz 和脉冲持续时间为 615 fs 时的平均功率为 1.1 kW [9],最近又证明了在重复频率为 500 kHz 时,脉冲持续时间为 30 fs 时的平均功率为 530 W [10]。因此,未来平均功率不足将不再是问题,而挑战在于如何通过保持高加工质量来解决这个问题,这将在以下章节中说明。