据报道,垂直外部空腔中的高度稳定的二极管无环状液体染料激光。设计很简单(无需制造过程步骤,不需要流体电路),紧凑(〜cm尺寸)和具有成本效益。报道了18%的光学效率为18%,具有出色的光稳定性 - 在50 Hz处140万脉冲后,没有效率下降,该值与流动系统相当,并且远高于有机固态激光器可实现的值。我们表明,热效应在稳定性和该激光器的动力学上都是中心的。在不同的泵脉冲持续时间/重复速率上详细研究了激光堆积和关闭动力学;他们揭示了脉搏缩短,泵脉冲持续时间和重复速率增加,这被证明是由于热透镜衍射损耗引起的。此激光结构提供了一个非常方便,简单的平台,用于测试或收集解决方案可供处理的增益材料。
a 代尔夫特理工大学机械、海洋与材料工程学院,海洋与运输技术系,Mekelweg 2, 2628 CD 代尔夫特,荷兰 b 根特大学机电系统与金属工程系和 FlandersMake@UGent - Corelab EEDT-MP,Sint-Martens-Latemlaan 2B, 8500 Kortrijk,比利时 c 查尔姆斯理工大学力学与海洋科学系,流体动力学系,412 96 哥德堡,瑞典 d 挪威科技大学能源与过程工程系,水力实验室,NO-7491 特隆赫姆,挪威 e 布伦瑞克工业大学 Elenia 高压技术与电力系统研究所,Schleinitzstraße 23, 38106 布伦瑞克,德国 f IHE 代尔夫特水教育研究所,Westvest 7, 2611 AX 代尔夫特,荷兰 g 代尔夫特理工大学水利工程、水利结构和洪水风险系,荷兰 h 密歇根大学土木与环境工程系,2350 Hayward,安娜堡,密歇根州 48109-2125,美国
1 简介................................................................................................ 1
摘要在电力系统中风和太阳能的大规模渗透,这种可再生能源的统治会增加系统的非线性特征和不确定性,这会导致可再生能源产生和负载需求之间的不匹配,并且会严重影响Bus Bus Bus电压分布网络的电压控制网络的电压控制。在这种情况下,本研究应用了泵存储的水力发电(PSH),该水电(PSH)迅速跟踪负载变量,可靠地操作,以平衡系统的功率以最大程度地减少总线电压偏差。此外,为了获得PSH的最佳控制政策,PSH的最佳加固学习算法(即深层确定性的政策梯度)被用于训练代理商来解决泵送储存水电 - 风能 - 极性(PSHWS)系统的连续转换。在IEEE 30-BUS Power System上评估了训练有素的代理的性能。仿真结果表明,所提出的方法每月累积偏差21.8%,这意味着它可以使系统在安全的电压范围内保持更有效。
艾伦最佳概念工作向美联储公司提交的Yampa Valley的抽水储存水力计划已开始在Craig以东五英里的Yampa河沿岸的一项抽水储存水电项目上。该项目旨在提供电力,以协助科罗拉多州公用事业在未来十年迈向100%可再生投资组合的情况下,平衡风能和太阳能发电的间歇性。在泵送储存水电中,从较高的储层中释放出水,以便在大多数情况下发电。当电力变得更容易获得时,下层储层中的水会在较高的水库上泵送到更高的水库。科罗拉多州有两个现有的抽水储存水力项目。乔治敦(Georgetown)和瓜尼拉(Guanella)通行证之间的机舱溪发电站利用1,200英尺的垂直滴,可产生高达324兆瓦的电力。于1967年完成,由Xcel Energy运营,有效地充当了带有四个小时的巨型电池
EnergyAustralia 今天宣布,其为新南威尔士州利斯戈的派珀山发电站供水的莱尔湖大坝可能成为新的抽水蓄能设施的所在地。能源执行官利兹·韦斯科特表示,初步估计表明,莱尔湖抽水蓄能设施将能够生产 350 兆瓦的电力,储能时间约为 8 小时,足以在高峰需求期间为超过 150,000 户家庭供电。“初步研究表明,莱尔湖抽水蓄能设施有巨大潜力成为新南威尔士州转型能源系统中的一个重要基础设施,”韦斯科特女士说。“抽水蓄能将继续在未来为家庭和企业提供可靠、实惠和更清洁的电力方面发挥重要作用。莱尔湖的优势之一是它已经位于主要输电线路附近,”她说。 “这是一项低排放技术,可以储存大量电力以便快速释放,有助于在可再生能源不可用时提供保障,并填补燃煤电厂退役后留下的巨大空白。几秒钟内即可运行的能力将确保灯一直亮着,并降低客户的能源成本。”莱尔湖将被用作下水库,上水库将位于沃克山的南侧,所有土地均归 EnergyAustralia 所有。派珀山负责人 Greg McIntyre 表示,该设施将为该地区带来可喜的经济增长,并支持利斯戈成为未来的可再生能源中心。“莱尔湖的新抽水蓄能设施将确保利斯戈在能源生产方面的遗产在未来得到很好的保存,”麦金太尔先生说。“如果该项目继续进行,我们预计在建设期间将创造数百个工作岗位,还需要一些职位来监督该设施的持续运营,”他说。 “在做出任何坚定决定之前,将进行详细评估,包括环境影响和规划审批;然而,第一步是与我们的社区协商。” EnergyAustralia 的目标是到 2050 年实现碳中和。最近的公告包括支持昆士兰州 250 兆瓦的 Kidston 抽水蓄能设施、承诺在维多利亚州建设 350 兆瓦的电池,以及新南威尔士州 300+ 兆瓦的 Tallawarra B 发电站,这将是澳大利亚首个净零排放氢气和天然气发电厂。
更广泛地应用可再生能源的瓶颈之一是开发高效的能源存储系统,以弥补可再生能源的间歇性。抽水蓄能 (PTES) 是一项非常新的技术,它可以成为抽水蓄能或压缩空气储能的一种有前途的独立于场地的替代方案,而不会受到相应的地质和环境限制。因此,本文对由高温热泵 (HTHP) 组成的 PTES 系统进行了完整的热力学分析,该系统通过中间高温热能存储系统 (HT-TES) 驱动有机朗肯循环 (ORC)。后者结合了潜热和显热热能存储子系统,以最大限度地发挥制冷剂过冷的优势。在验证了所提出的模型后,已经进行了几项参数研究,以评估在广泛的源和散热器温度下使用不同制冷剂和配置的系统性能。结果表明,对于在 HTHP 和 ORC 中采用相同制冷剂的系统,以及在 133 o C 下的潜热储热系统,R-1233zd(E) 和 R-1234ze(Z) 表现出最佳性能。在所有研究的 133 ◦ C 潜热储热系统的案例中,在 HTHP 中采用 R-1233zd(E) 并在 ORC 中采用丁烯时,系统性能最佳(同时考虑到对环境的影响)。理论上,在 HTHP 源温度和 ORC 接收器温度分别为 100 ◦ C 和 25 ◦ C 下,此类系统可达到 1.34 的功率比。© 2020 由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
可再生能源的生长需要灵活,低成本和有效的电气存储,以平衡能源供应与需求之间的不匹配。泵送的热能储存(PTE或Carnot电池)在电气产生大于需求时,用热泵(或其他加热系统)将电能转换为热能;当电力需求超过生产时,PTE会从两个热存储库(可能是Rankine循环模式)产生电力。经典PTES架构的成就不超过60%的往返电力效率。但是,使用废热回收率(热积分PTE)的创新档案能够达到比热泵的电力消耗大的功率循环的电力生产,从而增加了技术的价值。在本文中,开发了一个通用模型来根据两个主要输入(废热和环境空气温度)绘制性能映射。无论储存配置如何,当废热温度高,气温较低并且热泵的提升时,可以达到最佳性能。最后,将热整合的PTE技术与其他能量储藏的技术进行了比较,并且由于其高往返效率,低特定的价格和没有特定的地理条件,因此在理论上是有希望的。©2020 Elsevier Ltd.保留所有权利。
该项目附有一项社会经济影响研究,根据 Red Eléctrica 使用的方法,该研究以投入产出表(由西班牙国家统计局编制)中获得的隐含活动乘数为基础,估计与该工厂建设相关的创造就业机会为 4,366 个,其中 3,518 个将在加那利大岛创造(1,423 个直接就业岗位、1,987 个间接就业岗位和 109 个诱导就业岗位),为加那利群岛的经济可持续复苏做出贡献,并符合欧洲绿色协议的原则以及加那利群岛社会和经济振兴绿色协议的战略方针和基本原则。
随着风能和太阳能等可变可再生能源的整合,能源行业正在经历重大转型。这些能源随时间、日、季和年而变化;因此,需要短期和长期储能技术来保证电力的平稳和安全供应。本文批判性地回顾了现有的抽水蓄能电站类型,强调了每种配置的优缺点。我们提出了一些创新的抽水蓄能安排,这增加了找到合适地点建造大型水库以长期储存能源和水的可能性。在赞比西河上游流域的案例研究中,对一些建议的安排进行了比较,该地区由于地势平坦、气候干旱,储水能力受到很大限制。结果表明,建议的短期和长期循环组合抽水蓄能安排可能是可行的储能解决方案,并将储水成本降至接近零。