摘要:已证明介电纳米孔量可以避免与等离子装置相关的重型光损耗。但是,他们患有较少的共鸣。通过构建介电和金属材料的混合系统,可以保留低损失,同时实现更强的模式约束。在这里,我们使用高折射率多层透射金属二烷核酸WS 2在黄金上剥落,以制造并光学地表征杂交纳米天然基因的基因系统。我们在实验上观察了MIE共振,Fabry- perot模式和表面等离子体 - 果的杂种,从纳米antennas启动到底物。我们测量了杂交MIE-等离激元(MP)模式的实验质量因子,高达二氧化硅上纳米antennans中标准MIE共振的33倍。然后,我们调整纳米antena几何形状,以观察超级腔模式的特征,在实验中进一步增加了Q系数超过260。我们表明,在连续体中,这种准结合的状态是由于MIE共振与Fabry- perot质量模式在高阶Anapole条件附近的强烈耦合而产生的。我们进一步模拟了WS 2纳米antennas在黄金上,中间有5 nm厚的HBN垫片。通过将偶极子放置在该垫片中,我们计算出超过10 7的整体光提取增强,这是由于入射光的强,次波长限制引起的,Purcell因子超过700,并且发射光的高方向性高达50%。因此,我们表明多层TMD可用于实现简单制作的,混合的介电介质 - 现金纳米量纳米局部设备,允许访问高Q,强限制的MP共振,以及在TMD-金差距中发射器的大量增强。关键字:范德华材料,过渡金属二盐元化,纳米素化学,mie-等离激元共振,强耦合,连续体的结合状态,purcell Enhancement
许多损耗机制可以限制平面和基于3D的电路量子电动力学(CQED)设备的连贯性和可扩展性,尤其是由于包装。3D外壳的低损失和自然隔离使其成为相干缩放的良好候选者。我们引入了一种同轴传输线设备架构,其连贯性类似于传统的3D CQED系统。测量结果显示出良好控制的外部和片上耦合,没有交叉对话或虚假模式的光谱以及出色的谐振器和Qubit寿命。我们将一个无缝的3D腔内的谐振器量系统集成了一个谐振器,并在单个芯片上分别对量子器,读取谐振器,purcell滤镜和高Q条纹谐振器进行了图案。设备的连贯性及其易于集成使它成为复杂实验的有前途的工具。由AIP Publishing出版。[http://dx.doi.org/10.1063/1.4959241]
抽象的高折射率介电介电纳米antennas通过辐射通道的设计通过purcell效应强烈修改衰减速率。由于其介电性质,该领域主要是在纳米结构内和间隙内进行的,这很难使用扫描探针技术进行探测。在这里,我们使用单分子荧光寿命成像显微镜(SMFLIM)来绘制介质间隙纳米二二聚体的衰减速率增强,中位定位精度为14 nm。,我们在纳米坦纳(Nanoantenna)的间隙中测量的衰减速率几乎是玻璃基板上的30倍。通过将实验结果与数值模拟进行比较,我们表明,与等离激元纳米ant的情况相反,这种较大的增强本质上是辐射的,因此在量子光学和生物效率等应用中具有巨大的潜力。
钙钛矿量子点 (QD) 可以通过精确控制其成分和尺寸来化学合成,覆盖整个可见光谱范围,近年来已成为一类具有高量子产率的新型发射体。此外,它们的尺寸相关量子限制可以解释某些多晶钙钛矿薄膜令人惊讶的高发射效率,由于其晶粒结构,这些薄膜可能表现为效率相当低的发射体。5,6 为了加速其发射速率并进一步提高其量子产率(这在处理单光子量子发射体时至关重要),已经实施了不同的方案。7,8 目标是利用谐振器内的场强度增强,从而实现更高的 Purcell 因子。事实上,对钙钛矿进行图案化并将其沉积在其他材料上的能力使得它们可以与各种谐振器相结合:分布式反馈布拉格反射器、9 – 12
3 设计可编程玻色子量子模拟器 22 3.1 玻色子概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 48 3.3.2.3 最佳控制脉冲 . ...
参考:1。量子化学简介,A。K。Chandra,Tata MacGraw Hill 2。量子化学,Ira N. Levine,Prentice Hall 3。R. K. Prasad的量子化学,新时代国际出版商(1985)4。D. L. Pilar的基本量子化学,MC Graw Hill Book Co,纽约(1968)5。D. A. McQuarrie量子化学,OUP 1983 6。M. W. Hanna,《化学中的量子力学》,本杰明酒吧。7。分子量子力学,第三版,P。W。Atkins和R.S.弗里德曼8。化学中的小组理论和对称性,L。H. Hall(McGraw Hill)9。F. A.棉花,群体理论的化学应用,Wiley Eastern 2 Nd Edn.1992 10.V. Ramkrishnan&M。S. Gopinadhan,《化学群体理论Vishal Pub.1996》。11。无机化学,第三版,Alan G. Sharpe 12。理论无机化学,M。C。Day,J.Shellin 13。化学,第五版,约翰·E·麦克默里(John E. McMurry),罗伯特·费伊(Robert C.Hermann Dugas,生物有机化学,一种化学方法的酶作用方法,Springer International Edition 15。理论化学简介,杰克·西蒙斯(Jack Simons),剑桥16。无机化学的进展,第18和38卷。J. J. Lippard,Wiley 17。 无机反应机制,M。L。Tobe,Nelson Pub 18。 无机化学,K。F。Purcell和J. C. Kotz。 19。 生物无机化学原理,S。J。Lippard和J. M. Bers 20。 生物无机化学,I。Bertini,H。B。 Gray和S. J. Lippard 21。 22。 23。J. J. Lippard,Wiley 17。无机反应机制,M。L。Tobe,Nelson Pub 18。无机化学,K。F。Purcell和J. C. Kotz。 19。 生物无机化学原理,S。J。Lippard和J. M. Bers 20。 生物无机化学,I。Bertini,H。B。 Gray和S. J. Lippard 21。 22。 23。无机化学,K。F。Purcell和J. C. Kotz。19。生物无机化学原理,S。J。Lippard和J. M. Bers 20。生物无机化学,I。Bertini,H。B。Gray和S. J. Lippard 21。22。23。Biooganic Chemistry的原理,S。J。Lippard和J. M. Berg,大学科学书籍。生物无机化学,I。Bertini,H。B。Gray,S。J。Lippard和J. S. Valentine,大学科学书籍。无机生物化学卷I和II ed。 G. L. Eichhorn,Elsevier 24。 磁化学简介,艾伦·恩肖(Alan Earnshaw),1968年25。 磁化学元素,杜塔和Syamal,1993无机生物化学卷I和II ed。G. L. Eichhorn,Elsevier 24。磁化学简介,艾伦·恩肖(Alan Earnshaw),1968年25。磁化学元素,杜塔和Syamal,1993
标题:基于超材料的单光子发射器 摘要:能够按需工作(即触发时发射)的单光子发射器对于量子信息处理的实际实施至关重要。对于高效的单光子发射器,需要优化包括量子效率和收集效率在内的整体效率。研究了量子点或纳米粒子等 2 级系统的固态等效物以及纳米金刚石、SiC 等材料中的色心作为嵌入不同宿主的偶极子发射器。为了获得更高的量子效率,必须操纵宿主介质中的光子局部态密度以实现最大 Purcell 因子。进一步的设计需要将光子有效地耦合到远场,通常是空气或光纤。在本次演讲中,我将介绍光子晶体微腔中的偶极子发射器以及超材料,以提高它们在特定方向上的整体发射效率。
最近在二维材料中发现的量子发射器为量子信息集成光子器件开辟了新的前景。这些应用中的大多数都要求发射的光子是不可区分的,而这在二维材料中仍然难以实现。在这里,我们研究了利用电子束在六方氮化硼中产生的量子发射器的双光子干涉。我们在非共振激发下测量了 Hong-Ou-Mandel 干涉仪中零声子线光子的相关性。我们发现发射的光子在 3 纳秒的时间窗口内表现出 0.44 ± 0.11 的部分不可区分性,这对应于考虑不完美发射器纯度后的校正值 0.56 ± 0.11。 Hong-Ou-Mandel 可见度与后选择时间窗口宽度的相关性使我们能够估计发射器的失相时间约为 1.5 纳秒,约为自发辐射设定的极限的一半。使用 Purcell 效应和当前的 2D 材料光子学,可见度可达到 90% 以上。
摘要 - 在这封信中,我们通过光学注射增益开关(GS)半导体纳米仪(SNLS)来研究光频梳(OFC)的产生。使用速率方程进行了计算,其中包括percell腔体增强的自发发射因子F和发射偶联因子β。在分析中,评估了F的影响,以改变主和从纳米剂之间的注射强度和频率不吻。通常,由于在广泛的参数空间上进行光学注射,可以实现注射锁定区域,其中生成的OFC具有宽10 dB的频率跨度(F 10),高载体与噪声比(CNR)和窄线路。此外,通过提高注入强度,可以进一步增强F 10和CNR。此外,F 10和CNR分别随着f的增加而减小和增加。这些新颖的发现是基于光子整合电路中光学注射的GS SNL的简单和紧凑源OFC来源的开发。