统计(DRG统计),该统计是由德国联邦统计办公室收集的,用于医院服务的成本帐户[15]。DRG统计数据包含有关患者的年龄,性别和居住地的形成,以及有关GER的所有大约1900万个医院病例的疾病和手术的信息。由于DRG统计数据不包含有关收入和教育的信息,因此德国社会经济剥夺指数(GISD版本2022 V 0。2)[16]用于社会经济差异。该指数包括所有地区(称为克雷斯)的教育,就业和收入状况的信息,并将其分为奎因瓷砖,范围从低到高社会经济剥夺[17]。五分位数1反映了社会经济贫困较低的地区,五分位数2至4中等贫困的地区和五分位数5个地区的社会经济贫困较高的地区。GISD通过患者的居住区与医院统计数据相关。
精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。
时空时间序列通常是通过放置在不同位置的监视传感器来收集的,这些传感器通常由于各种故障而包含缺失值,例如机械损坏和内部中断。归纳缺失值对于分析时间序列至关重要。恢复特定的数据点时,大多数现有方法都考虑了与该点相关的所有信息,较小的因果关系。在数据收集期间,不可避免地包括一些未知的混杂因素,例如,时间序列中的背景噪声和构造的传感器网络中的非杂货快捷方式边缘。这些混杂因素可以打开后门路径并在输入和输出之间建立非泡沫相关性。过度探索这些非毒性相关性可能会导致过度拟合。在本文中,我们首先从因果的角度重新审视时空时间序列,并展示如何通过前门调整来阻止混杂因素。基于前门调整的结果,我们引入了一种新颖的C技术性-Ware Sp aTiot e Mpo r al图神经网络(CASPER),其中包含一种新型的基于及时的解码器(PBD)和空间 - 可导致的因果发生(SCA)。PBD可以减少混杂因素的影响,而SCA可以发现嵌入之间的因果关系稀疏。理论分析表明,SCA根据梯度值发现因果关系。我们在三个现实世界数据集上评估Casper,实验结果表明,Casper可以胜过基准,并可以有效地发现因果关系。
摘要 由于抗生素耐药性的增加,霍乱弧菌在低收入国家造成了危及生命的感染。人们研究了创新的药理学靶点,霍乱弧菌编码的碳酸酐酶 (CAs,EC:4.2.1.1) (Vch CAs) 成为一个有价值的选择。最近,我们开发了一个大型对苯和间苯磺酰胺库,其特征是具有不同柔韧性程度的部分作为 CAs 抑制剂。基于停止流的酶促测定表明该库对 Vch a CA 有强烈的抑制作用,而对其他同工型的亲和力较低。特别是环脲 9c 对 Vch a CA 的抑制作用达到纳摩尔水平(KI ¼ 4.7 nM),并且对人类同工酶具有高选择性(SI 90)。计算研究揭示了部分柔韧性对抑制活性和同工型选择性的影响,并允许进行准确的 SAR。然而,尽管 Vch CA 与细菌的毒力有关而非其存活率,我们评估了此类化合物的抗菌活性,结果没有直接活性。
责任/免责声明的限制,而出版商和作者在准备这项工作方面都尽了最大的努力,但他们对这项工作内容的准确性或完整性没有任何代表或保证,并特别否认所有保证,包括无限制地暗示对特定目的的暗示保证。销售代表,书面销售材料或此工作的促销报表不得创建或扩展保修。在这项工作中将组织,网站或产品作为引用和/或潜在信息来源的事实并不意味着出版商和作者认可组织,网站或产品可能提供或建议的信息或服务。这项工作的出售是为了了解出版商没有从事专业服务。此处包含的建议和策略可能不适合您的情况。您应该在适当的情况下咨询专家。出版商和作者都不应对任何利润损失或任何其他商业损失(包括但不限于特殊,附带,结果或其他损害)负责。此外,读者应意识到,这项工作中列出的网站可能已经改变或消失了这项工作的写作和阅读时。
[19] Kunin,V.,Copeland,A.,Lapidus,A.,Mavromatis,K。,&Hugenholtz,P。(2008)。宏基因组学的生物信息学指南。微生物学和分子生物学评论,72(4),557-578。[20] Jolley,K。A.,Chan,M。S.,&Maiden,M.C。(2004)。MLSTDBNET分布的多洛克斯序列键入(MLST)数据库。BMC生物信息学,5(1),86。[21] Enright,M。C.和Spratt,B。G.(1999)。多焦点序列键入。微生物学的趋势,7(12),482-487。[22] Healy,M.,Huong,J.,Bittner,T.,Lising,M.,Frye,S.,Raza,S。,&Woods,C。(2005)。通过自动重复序列的PCR键入微生物DNA。临床微生物学杂志,第43(1)期,199-207。[23] Vergnaud,G。和Pourcel,C。(2006)。多个基因座VNTR(串联重复的可变数量)分析。分子鉴定,系统学和原核生物的种群结构,83-104。[24] Van Belkum,A。(2007)。通过多焦点数量的串联重复分析(MLVA)来追踪细菌物种的分离株。病原体和疾病,49(1),22-27。[25] Vergnaud,G。和Pourcel,C。(2009)。多个基因座变量串联重复分析数。微生物的分子流行病学:方法和方案,141-158。[26] Fricke,W。F.,Rasko,D。A.和Ravel,J。(2009)。基因组学在鉴定,预测和预防生物学威胁中的作用。PLOS Biology,7(10),E1000217。[27] Wu,M。和Eisen,J。A.(2008)。95-100)。一种简单,快速且准确的系统基因推断方法。基因组生物学,9(10),R151。[28] Liu,B.,Gibbons,T.,Ghodsi,M。和Pop,M。(2010年12月)。隐式:元基因组序列的分类分析。生物信息学和生物医学(BIBM),2010年IEEE国际会议(pp。IEEE。 [29] Wang,Z。,&Wu,M。(2013)。 门水平细菌系统发育标记数据库。 分子生物学与进化,30(6),1258-1262。 [30] Darling,A。E.,Jospin,G.,Lowe,E.,Matsen IV,F。A.,Bik,H。M.,&Eisen,J. A. (2014)。 系统缩影:基因组和宏基因组的系统发育分析。 peerj,2,e243。 [31] Taberlet,P.,Prud'Homme,S.M.,Campione,E.,Roy,J.,Miquel,C.,Shehzad,W。,&Melodelima,C。(2012)。 土壤采样和细胞外DNA的分离,适用于大量的起始材料。 分子生态学,21(8),1816-1820。IEEE。[29] Wang,Z。,&Wu,M。(2013)。门水平细菌系统发育标记数据库。分子生物学与进化,30(6),1258-1262。[30] Darling,A。E.,Jospin,G.,Lowe,E.,Matsen IV,F。A.,Bik,H。M.,&Eisen,J.A.(2014)。系统缩影:基因组和宏基因组的系统发育分析。peerj,2,e243。[31] Taberlet,P.,Prud'Homme,S.M.,Campione,E.,Roy,J.,Miquel,C.,Shehzad,W。,&Melodelima,C。(2012)。土壤采样和细胞外DNA的分离,适用于大量的起始材料。分子生态学,21(8),1816-1820。
美国北卡罗来纳州教堂山市北卡罗来纳大学埃舍尔曼药学院。电子邮件:alex_tropsha@unc.edu b 加利福尼亚大学圣地亚哥分校,美国加利福尼亚州圣地亚哥 c 戈亚斯联邦大学药学系,巴西哥伦布省戈亚尼亚 d BenevolentAI,英国伦敦 e Collaborations Pharmaceuticals,美国北卡罗来纳州罗利 f 北卡罗来纳州立大学化学系,美国北卡罗来纳州罗利 g 卡内基梅隆大学化学系,美国宾夕法尼亚州匹兹堡 h 石溪大学应用数学与统计学系,美国纽约州石溪 i 墨西哥国立自治大学药学系,墨西哥墨西哥城 j 密歇根州立大学化学系,美国密歇根州东兰辛 k 新墨西哥大学内科系和 UNM 综合癌症中心,美国新墨西哥州阿尔伯克基 l 瑞典哥德堡大学风湿病与炎症研究系 m丹麦哥本哈根 n 俄罗斯莫斯科生物医学化学研究所 o 瑞士苏黎世瑞士联邦理工学院药学研究所 p 英国伦敦大学学院药学院 q 法国斯特拉斯堡大学化学系 r 澳大利亚维多利亚州墨尔本莫纳什大学莫纳什药学研究所 s 澳大利亚邦多拉拉筹伯大学拉筹伯分子科学研究所生物化学与遗传学学院 t 英国诺丁汉大学药学院 u 美国马里兰州贝塞斯达国家转化科学促进中心 v 加拿大不列颠哥伦比亚省温哥华不列颠哥伦比亚大学温哥华前列腺中心。电子邮箱:acherkasov@prostatecentre.com w 日本札幌北海道大学化学反应设计与发现研究所(WPI-ICReDD)
选择研究助理的资格标准:候选人至少应具有M.SC。与生活科学学科的学位(植物学/动物学/生物技术/微生物学/生物信息/生命科学等)。将偏爱具有现代工具和生活科学技术相关经验的候选人。候选人在面试之日必须不到30岁。每月的研究助手的合并报酬为Rs。20,000.00(卢比二万卢比)。
深度学习是一种自动学习方法,它基于大量示例的学习模式。 div>是一种复杂问题的特别有趣的方法,为之,数据(经验)广泛可用,但是制定分析解决方案是不可行的。 div>在本课程中,我们将探讨深度智能和计算机视觉的基本概念。 div>我们将通过理论会议和实践示例来展示如何根据任务(对象检测,实例分割,对象之间的关系预测)和数据模式(图像,视频,3D)创建和训练深层智力模型。 div>该课程将以一些高级问题的介绍以及有关最近趋势的讨论进行介绍。 div>
VBM 数据 ● 使用默认值分割数据(对纵向数据使用分段纵向数据)。现在可用于 VBM 的结果分割保存在“mri”文件夹中,灰质的分割名为“mwp1”,白质的分割名为“mwp2”。如果您使用了纵向管道,则灰质的默认分割名为“mwp1r”或“mwmwp1r”(如果选择了用于检测较大变化的纵向模型)。 ● 获取总颅内容积 (TIV) 以校正不同的脑部大小和体积。选择保存在“报告”文件夹中的 xml 文件。 ● 使用检查样本检查 VBM 数据的数据质量(可选择将 TIV 和年龄视为干扰变量)。从第一步中选择灰质或白质分割。 ● 平滑数据(建议起始值为 6-8mm 1)。从第一步中选择灰质或白质分割。 ● 指定具有平滑灰质或白质分割的二级模型,并检查设计正交性和样本同质性: