我们目前正在AI中经历关键时刻,这种趋势正在迅速扩展到各个部门,并且可能对社会,企业和政府产生巨大的影响。这一激增主要是由绩效的重大增强驱动的,几乎任何专业都可以通过合并AI技术来实现。因此,未能采用这些能力的实体可能很快发现自己处于竞争不利的位置。应对这种不断增长的需求,各种开发人员和公司正在积极将AI嵌入常用平台,例如桌面和移动操作系统(OS)。有些人甚至正在开发专门的硬件,以提高这种变革性技术的效率,以确保AI工具对更广泛的受众更容易获得和有效。
同态加密代表了一种通过启用计算直接在加密数据上执行的无需解密的转换方法来保护云计算的方法。本研究探讨了同构加密方案的潜力,以增强云存储的安全性和隐私性和敏感信息的处理。通过在整个计算过程中维护数据加密,同态加密可确保敏感数据仍然可以保护未经授权的访问和漏洞,即使在云环境中也是如此。该研究研究了各种同态加密技术,评估了其现实应用应用的性能,可伸缩性和实用性。此外,它解决了计算开销和实施复杂性等挑战,提出了解决方案,以优化和简化云计算中同构加密的使用。这项研究强调了在越来越多的云依赖的数字景观中推进加密技术以维护数据隐私的重要性。
● 量子比特 - 量子信息的基本单位,是经典二进制比特的量子版本。它可以存在于叠加态 - 0 到 1 之间的任何状态 ● 量子比特保真度 - 量子比特保持相干/可操作的时间 ● 量子效应 - 叠加、干涉和纠缠 ● NISQ - 嘈杂的中尺度量子技术,通常指现代非常嘈杂的量子计算机 ● QASM - 用于编程量子计算机的量子组装 ● 量子霸权 - 证明可编程量子设备可以解决经典计算机无法在任何可行时间内解决的问题(任何问题) ● 量子优势 - 与霸权相同,但用于有用的应用
摘要本文的特定目的在于:为材料科学、化学或电子学等领域的读者提供利用其材料系统实施储层计算 (RC) 实验的概述。关于该主题的介绍性文献很少,绝大多数评论都提出了 RC 的基本概念,这些概念对于不熟悉机器学习领域的人来说可能并不简单(例如,参见参考文献 Lukoˇseviˇcius (2012 Neural Networks: Tricks of the Trade (Berlin: Springer) pp 659–686)。考虑到大量表现出非线性行为和短期记忆的材料系统可用于设计新颖的计算范式,这是令人遗憾的。RC 提供了一个使用材料系统进行计算的框架,该框架可以避免在硬件上实现传统的、功能齐全的前馈神经网络时出现的典型问题,例如最小的设备间变异性以及对每个单元/神经元和连接的控制。相反,可以使用随机的、未经训练的储存器,其中仅优化输出层,例如使用线性回归。在下文中,我们将重点介绍 RC 在基于硬件的神经网络中的潜力,以及相对于更传统的方法,以及在实施过程中需要克服的障碍。准备一个高维非线性系统作为特定任务的高性能储存器并不像乍看起来那么容易。我们希望本教程能够降低科学家试图利用他们的非线性系统进行通常在机器学习和人工智能领域执行的计算任务的障碍。与本文配套的模拟工具可在线获取 7 。
轨道 1 - 数据和元数据组织、管理和访问 轨道 2 - 在线计算 轨道 3 - 离线计算 轨道 4 - 分布式计算 轨道 5 - 可持续和协作软件工程 轨道 6 - 物理分析工具 轨道 7 - 设施和虚拟化 轨道 8 - 协作、重新解释、推广和教育 轨道 9 - 人工智能和机器学习 轨道 10 - 百亿亿次级科学 轨道 11 - 异构计算和加速器 轨道 12 - 量子计算
本计算机教师手册涵盖了有效教授新课程第一年所需的所有内容、教学法、教学资源和评估。它包含第一年前 12 周的信息,其余 12 周包含在第二册中。因此,教师应使用本教师手册制定加纳教育服务要求的每周学习计划。新课程的一些主要特点如下。以学习者为中心的课程 SHS、SHTS 和 STEM 课程以学习者现有的生活经验、知识和理解为基础,将学习者置于教学和学习的中心。学习者积极参与知识创造过程,教师充当引导者。这涉及使用互动和实用的教学和学习方法以及学习者的环境,使学习变得有趣和可关联。例如,新课程侧重于加纳文化、加纳历史和加纳地理,以便学习者首先了解他们的家乡和周围环境,然后再将他们的知识扩展到全球。弘扬加纳价值观 课程中融入了共同的加纳价值观,以确保所有年轻人都了解成为负责任的加纳公民意味着什么。这些价值观包括真理、正直、多样性、公平、自主学习、自信、适应能力和机智、领导力和负责任的公民意识。
摘要 — 本文深入探讨了量子计算领域及其彻底改变数据加密方法的潜力。利用 IBM 的 Qiskit 工具,我们研究了旨在加强数据安全性的加密方法。首先,我们阐明了量子计算及其在加密中的关键作用,然后对经典二进制加密和量子加密方法进行了比较分析。该分析包括利用 Qiskit 进行量子加密实现的实际演示,强调了基于量子的加密技术所提供的稳健性和增强的安全性。在整个探索过程中,我们解决了该领域遇到的相关挑战,例如现有量子硬件固有的局限性,同时也概述了未来的发展方向。在本文的结尾,读者将认识到量子计算在塑造加密技术未来格局方面的深远影响。
摘要 - 现代系统的快速发展引起了人们对隐私和控制的关注。本文探讨了集中式城市操作系统的假设情况CTO,该CTO管理基础架构(如交通信号灯)并收集了大量的个人数据。我们探讨了与此类系统相关的潜在风险,包括私人公司的权力集中以及操纵用户行为的能力。个人(目前每个美国人超过2.3 GB)铸造的数字阴影不断增长,提出了有关数据安全性和滥用潜力的问题。ctos,如果实施,可以创建一个网络,在该网络中,个人信息直接链接到物理系统,并用于目标广告以外的目的。从在线服务到紧急系统的现代技术的相互联系性质增加了带有广泛后果的网络攻击的潜力。本文研究了这些问题,并探讨了确保负责任的数据管理的潜在解决方案,并减轻与超连接的城市基础设施相关的风险。