摘要:屋顶太阳能光伏(PV)正在加速许多国家,尤其是澳大利亚的许多国家 /地区向低碳电气系统的过渡。本审查论文概述了(1)技术,(2)经济,(3)社会政治和(4)监管和制度方面,当将过渡到屋顶PV占主导的电力系统时,应同时考虑这些方面。我们考虑了两个突出的远程过渡理论的适用性,以理解过渡过程中这四个方面中元素的重要性和相互作用。过渡理论的多层次观点(MLP)被认为最适合这项任务,因为它解决了社会技术系统的根本转变,而不是对技术和/或经济解决方案进行权重。我们发现,在既定的岛化电力系统的分销网络中摄入的屋顶PV驱动了可再生能源转变的研究相对较少的研究。这些岛的电力系统将是第一个从高水平的屋顶PV中体验系统影响的首次。本综述提供了对理解屋顶PV领导的能源过渡的重要差距的进一步分析,以及对决策者在过渡过程中维持稳定的电力供应方面的影响。
建模和仿真是设计工程师使用的基本工具,以加快氢技术的理解,预测和发展。它们包括从组件级别到多系统研究不等的广泛的工具,它们应提供参考和经过验证的块,这些块超出了单个演示项目[1]。电力对加气(PTG)技术,导致可再生(或绿色)氢(H 2)的生产被认为是可持续发展目标(SDG)的关键技术(SDG),因为它可以促进清洁供应(即来自可再生能源)和可管理的能源(对H 2)的供应(即,对所有人的可管理能源)。可再生能源总体上可以丰富且便宜,也被稀释和可变,但是这些弊端可以通过季节性(大规模)存储来克服,在这些储存中,其他方法(例如电池)不适用,而以H 2的形式进行化学存储,而衍生产品的形式和衍生品对于各种用途都非常有效。因此,可变可再生能源(VRE)和电解器(EL)与其操作的电力控制设备的整合是管理VRE(在连接或独立应用程序中)的可变性的关键开发问题,以产生可用于不同扇区或用于电网的动力储备的H 2。有几种连接PV-EL共同体的可能性:可以用逆变器(DC-AC)转换PV面板的能量,并由提供的EL使用,并由Rectiferers提供的EL产生绿色H 2的杰出方法是从电网(离网)分离的系统中使用光伏太阳能(PV-EL)的电解。这些系统避免了电气连接和传输的成本,它引起了对技术,环境和政治原因的兴趣,例如PV和EL的进步,减少环境排放的需求,化石燃料的价格上涨以及国家的能源独立性。水电解是一个良好的工艺,具有高水平的技术开发(TRL),但是H 2的大规模生产与VRE的大规模生产仍然较低,因为由于技术的组合而引起的困难而引起的,因此将原始能源的可变性与系统的不同组合调节到系统的不同组合中,因此具有较低的商业发展。为了划定本文旨在填写的这一领域的发展以及研究差距,我们提出了一个搜索问题,作为“ PV太阳能系统和电解器的耦合,以效率地生产绿色氢(Off-网格)”,使用以下wos中的wos:(((ts)) ts¼(电 *))和ts¼(pv))和ts¼(coupl *)。这些系统已经在科学技术文献中研究了各个组件,但考虑到子系统的连接和动态特征,它们的尺寸和优化不是很多。由于这些系统的一个重要设计方面是,根据太阳能资源,生产和环保因素,组件的单独优化通常不会导致系统的最佳全局结果[4 E 7]。
在过去十年中,已经开发出许多太阳能预测工具来预测光伏 (PV) 发电场的发电量。通过将预测与测量的太阳能数据进行比较来评估太阳能预测的质量。然而,这种方法没有考虑预测对其应用的附加值。因此,考虑到这个评估框架,预测的改进能带来什么价值?为了回答这个问题,这项工作比较了不同运行太阳能预测对特定应用的价值。目的是寻找经济价值与评估预测质量所定义的误差指标之间的关系。新一代大型光伏电站集成了 ESS。目的是增加将生产注入电网的灵活性,从而利用电力市场提供的可能性(例如能源套利)来实现利润最大化。为了优化这些特定 ESS 的运行,预测太阳能生产至关重要。本研究考虑的案例是澳大利亚能源市场背景下与锂离子电池相关的数兆瓦大型光伏发电场。对于这一特定案例研究,结果表明,基于平均绝对误差 (MAE) 评估预测质量的指标与应用预测带来的经济收益几乎呈线性关系。更准确地说,MAE 提高 1% 大约可使经济收益增加 2%。
在过去的十年中,已经开发了许多太阳预测工具来预测光伏(PV)农场的能量产生。通过将预测与测量的太阳能数据进行比较来评估太阳预测的质量。但是,该方法没有考虑其应用程序的预测的附加值。因此,考虑到此评估框架,可以改善预测的价值?要回答这个问题,这项工作比较了针对特定应用程序的不同操作太阳预测的价值。目的是寻找经济价值与定义的误差指标之间的关系,以评估预测质量。新一代的大规模PV植物整合了ESS。目的是通过利用电力市场所带来的可能性(例如能源套利)来增强生产力的注入到电网中,从而最大程度地提高利润。为了优化这些特定EST的操作,对太阳能生产的预测至关重要。这项工作中考虑的研究案例是在澳大利亚能源市场环境中与锂离子电池相关的几兆瓦的大型光伏农场。在本特定的案例研究中,结果表明,用于评估基于平均绝对误差(MAE)的预测质量的指标(MAE)与通过应用预测带来的经济增益几乎是线性的。更确切地说,MAE的1%点的提高大约增加了2%的经济增益。
摘要—本报告介绍了一种用于电网连接的光伏 (PV) 系统与混合能源存储的电源管理方案,重点是最大限度地利用太阳能并确保电网稳定性。该方案结合了动态能源管理和电力流控制策略,可根据太阳能发电和电网需求调整电池充电/放电率。在 MATLAB/Simulink 中开发的仿真模型评估了各种参数和性能指标。结果表明,太阳能和电池的使用得到了优化,电网依赖性降低,电网稳定性增强,有望节省成本并提高弹性。总体而言,该方案可有效整合可再生能源,确保可靠的电力供应,同时最大限度地减少环境影响和运营成本。
重复使用:商家尾货,在二级市场转售。维修:现场维修模块和组件。翻新:拆卸和运输模块进行维修,现场更换受风暴损坏的模块。再制造:拆卸、更换电池、重新层压。重新利用:使用新组件重新供电系统
4 Terms and symbols ....................................................................................................................... 5 4.1 PV connection ............................................................................................................................. 5 4.2 AC connection (DC-coupled and generator-coupled systems) .................................................. 5 4.3 AC connection (AC-coupled systems) ........................................................................................ 6 4.4 DC connection (PV generator-coupled systems) ....................................................................... 6 4.5 Battery part ................................................................................................................................. 6 4.6 Connection of the battery component to the power conversion system ..................................................................... 7 4.7测试序列的参数化....................................................................................................................................................................................................................................................... 8 4.8测量变量.............................................................................................................................................................................................................................................
整合大数据和能源AI技术以构建能源管理云;利用“平台 +生态系统”模型,通过智能协同和综合计划的网格加载存储来开发能源数字化的基础。
1.2 施工期间的安全 农民/申请人的责任:请注意,如果发生与开发相关的任何事件,部长或部门的任何官员均不对任何人员、动物或财产的损害、损失或伤害负责,并且申请人应就开发工作期间发生的任何此类损害、损失或伤害向部长或部长的任何官员进行全额赔偿。提醒农民/申请人,根据《2013 年工作安全、健康和福利(建筑)条例》和《2005 年工作安全、健康和福利法》第 17 条,他们对正在计划或进行的任何建筑工程负有重大责任。农民/申请人有责任在设计工作开始前以书面形式任命一名胜任的设计过程项目主管 (PSDP),并在施工开始前以书面形式任命一名胜任的施工阶段项目主管 (PSCS)。