电源电压范围,V CC (见注释 1) −0.3 V 至 6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 正电荷泵电压范围,V+ (见注释 1) V CC − 0.3 V 至 14 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 负电荷泵电压范围,V− (见注释 1) −14 V 至 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 输入电压范围,VI:驱动器 −0.3 V 至 V+ + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 接收器 ± 30 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 输出电压范围,VO:驱动器V− − 0.3 V 至V+ + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 接收器−0.3 V 至V CC + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...短路持续时间:D OUT 连续.................... ... . . . . . . . . N 封装 67 ° C/W . . . . . . . . . . . . . . . PW 封装 108 ° C/W . . . . . . . . . . . . . . . 工作虚拟结温,TJ 150 ° C . . . . . . . . . . . . . . . . . .................................................................................................................................. 存储温度范围,T stg −65 ° C 至 150 ° C ....................................................................................................................................................... ................................................................................................................................. ....................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ...................................................................................................................................... ...................................................................................................................................... ......................................................................................................................................
本文介绍了基于MOSFET晶体管的零偏置功率探测器的设计和表征,该晶体管从ST-Microelectronics中集成了SIGE 55 nm BICMOS技术。电路的工作频带位于(38-55)GHz范围内,致力于优化5G设备中的功耗。使用该技术中可用的三个NMO类别(GP,LP,HPA),目的是根据不同的NMOS类别设计多个检测器,以比较其性能。此外,设计了基于6 LP晶体管的堆栈的检测器,以增加动态范围。与最近的工作相比,HPA检测器的性能非常好,噪声等效功率值(NEP)3.8 PW/√和67 dB的大动态范围。这些检测器的提取的电压灵敏度值在(850-1400)v/w之间显示了与仿真结果的良好协议。
可以减少未成年人饮酒。但是,这是一个组织或社区无法完成的。相反,解决方案是通过与统一目标的广泛合作和参与来实现的。可以预见,该计划中概述的策略将被密歇根州的社区,学校,政府,基于信仰的团体和医疗组织的现任和潜在合作伙伴利用,以帮助减少未成年饮酒。此外,该计划旨在作为区域预付费住院健康计划(PIHP),社区联盟,预防提供者以及其他州和社区级合作伙伴的指南,以减少未成年人饮酒。密歇根州是一个多元化的国家;因此,需要由社区利益相关者确定特定的本地策略。与转型指导委员会(TSC)预防工作组(PW)和密歇根州减少未成年人饮酒(MCRUD)(MCRUD)结合使用,Orosc将领导每年审查计划以衡量基准和进步的计划。
商品名称:ARTS S.r.l. 主要活动 ARTS 由两个团队组成: 系统生产和服务供应:第一个团队负责根据客户要求设计和开发集成系统;后者负责提供数据采集和信号分析方面的咨询、培训和人力。 ARTS 已经在航空航天、汽车和电子设备、能源动力等广泛的工业领域实现了许多集成解决方案,例如: - 航空测试台(如 JT8 或 PW 120)和火箭发动机(zefiro); - 用于转向测试的自动测试设备、悬架装置的实时数据采集; - 用于电信调制解调器之间的通信测试和海底电缆质量测试的软件; - 开发灰烬输送机(热电厂)用于垃圾焚烧厂的远程监控软件。 总部 城市 地址 那不勒斯 Corso Arnaldo Lucci, 96 电话传真 +39 081 5534168 +39 081 5534168 电子邮件地址 网站
应引用清单如下:Lim SS,Semnani-Azad Z,Morieri ML,Ng Ah,Ahmad A,Ahmad A,Fitipaldi H,Fitipaldi H,Fitipaldi H,Boyle J,Collin C,Dennis JM,Langenberg C,Loos RJF,Loos RJF,Morrison M,Morrison M,Morrison M,Ramsay M,Ramsay M,Ramsay M,Sanyal AJ,Sanyal aj,Santar n,Sattar n,sattar n,hiver jias jias jias jias jias jias jias jias jias jias jias jias w,gias s. Trenell Mi,Rich SS,Sargent JL,Franks PW。临床相关性精确医学研究指南:Beprecise清单。自然医学。2024。
1 圣路易斯儿童医院,31-503 克拉科夫,波兰;katarzyna.dylag@dzieciecyszpital.pl (KAD);krasnoludki11a@poczta.onet.pl (BB) 2 克拉科夫雅盖隆大学医学院病理生理学系,31-121 克拉科夫,波兰 3 克拉科夫雅盖隆大学医学院生物信息学和远程医疗系,30-688 克拉科夫,波兰;wiktoria.wieczorek@student.uj.edu.pl (WW); piotr.walecki@uj.edu.pl(PW)4 AGH 科技大学自动控制与机器人系,30-059 克拉科夫,波兰 5 VSB 俄斯特拉发技术大学控制论与生物医学工程系,708 00 俄斯特拉发-波鲁巴,捷克共和国;radek.martinek@vsb.cz 6 奥波莱理工大学电气工程学院,45-758 奥波莱,波兰* 通信地址:bauer@agh.edu.pl(WB);kawala84@gmail.com(AK-S.)† 这些作者对本文的贡献相同。
电源电压范围,V CC (见注释 1) −0.3 V 至 6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 正电荷泵电压范围,V+ (见注释 1) V CC − 0.3 V 至 14 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 负电荷泵电压范围,V− (见注释 1) −14 V 至 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 输入电压范围,VI:驱动器 −0.3 V 至 V+ + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 接收器 ± 30 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 输出电压范围,VO:驱动器V− − 0.3 V 至V+ + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 接收器−0.3 V 至V CC + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...短路持续时间:D OUT 连续.................... ... . . . . . . . . N 封装 67 ° C/W . . . . . . . . . . . . . . . PW 封装 108 ° C/W . . . . . . . . . . . . . . . 工作虚拟结温,TJ 150 ° C . . . . . . . . . . . . . . . . . .................................................................................................................................. 存储温度范围,T stg −65 ° C 至 150 ° C ....................................................................................................................................................... ................................................................................................................................. ....................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ...................................................................................................................................... ...................................................................................................................................... ......................................................................................................................................
摘要:离散傅里叶变换 (DFT) 是光子量子信息的基础,但将其扩展到高维的能力在很大程度上取决于物理编码,而频率箱等新兴平台缺乏实用方法。在本文中,我们表明,d 点频率箱 DFT 可以用固定的三分量量子频率处理器 (QFP) 实现,只需在 d 每次增量增加时向电光调制信号添加一个射频谐波即可。我们在数值模拟中验证了门保真度 FW > 0.9997 和成功概率 PW > 0.965,最高 d = 10,并通过实验实现了 d = 3 的解决方案,利用并行 DFT 的测量来量化纠缠并对多个双光子频率箱状态进行层析成像。我们的结果为量子通信和网络中的高维频率箱协议提供了新的机会。
图 1 显示了 EC135。该飞机实现了飞机结构和先进技术部件的最佳组合。其中最重要的项目是: 具有蛤壳门和单层地板的后装载能力 混合机身结构(复合材料、金属板) 具有长时间空运行能力的铝合金 MGB 被动隔振系统 [1] 自动控制的可变旋翼速度 [2] 具有数字电子发动机控制(FADEC)的双发动机配置 [3] 在 Turbomeca Arrius 2B(1)和 Pratt & Whitney PW 206 B 发动机之间进行选择 偏航 SAS(单缸)用于 VFR 操作,计划进行双/单飞行员 IFR 认证 [4] 具有高可见度的驾驶舱布局 现代 MMI 技术(Avionique Nouvelle) 无轴承主旋翼系统 具有抛物线叶尖和先进 DM-H3/H4 翼型的复合材料叶片 带不等距叶片的扇翼尾桨(Fenestron) [5]
摘要本研究旨在鉴定阿尔及利亚南部(Tidikelt地区)种植的高粱双色(L.)Moench(Poales poaceae)表型。我们基于国际半弧形热带(ICRISAT)的描述性研究,在植物的成熟期间组织了几次对高粱种植地点的探视,以库存和评估这种作物的表型。证明了植物参数测量结果,植物高度(HP),节点(NN)和叶子(LN)的数量(LN)和圆锥颜色(PC)显示出显着的差异,而我们记录了第三叶尺寸的非常小的差异:长度(L.3L)宽度(W.3l)(W.3L)和Panicle(W.3L)和Panicle(PL)(PL)(PL)。结果还表明,除混合和驯化的高粱外,当地的白色和红色高粱还有表型多样性,这些高粱通常被用作饲料。在此基础上,这种谷物种植可以在促进该地区本地的小米群体的种植方面发挥主要作用。