使用病毒载体(例如AAV)实现了体内基因编辑,但是这些稳定的基于DNA的载体导致Cas9核糖核酸酶和SGRNA在细胞7中的长期表达。虽然扩展到编辑机械的接触可能有利于基因校正率,但它也可能导致脱靶遗传改变的积累8,9。此外,AAV CAPSIDS的免疫原性触发中和抗体和T细胞反应限制了基于AAV的治疗方法的重复给药10;但是,由于较高的细胞周转率11,肺中的基因编辑受益于重复给药。此外,尺寸限制对将有效的Pyogenes CRISPR-CAS9(SPCAS9)构建体构成了挑战,将其限制到AAVS 12中。可以通过非病毒,基于mRNA的递送平台来克服这些局限性,该平台能够瞬时表达并重复给药13。LNP是最先进的非病毒载体,如Moderna和Pfizer/Biontech开发的广泛接受的mRNA疫苗技术所见,并在Cas9肝基因编辑平台14-16中显示出巨大的希望。然而,尚未报告基于LNP的CAS9递送系统,用于有效的肺基因修饰。与肝脏相比,由于其专门的细胞类型,粘液屏障和粘膜缩减清除率,肺部对分娩构成了独特的挑战。因此,由于大多数病毒和非病毒方法17,气道上皮仍然很差,因此仍然需要采取有效的方法。
对单分子水平的蛋白质的分析发现了在合奏平均技术中掩盖的异质行为。传统上,酶的数字定量涉及通过促荧光底物的转化将单个分子划分为微室的单分子的观察和计数。基于线性信号扩增的策略仅限于几种酶,其周转率足够高。在这里我们表明,通过将指数分子放大器的敏感性与DNA-酶电路的模块化和液滴读数结合,允许在单分子水平上特异性检测几乎任何D(R)NA与NA相关的酶促活性。该策略(表示为数字PUMA)已通过十几种不同的酶进行了验证,其中包括许多催化速率缓慢的酶,并降低到Pyogenes cas9的明显单周转极限。数字计数独特地产生绝对摩尔定量,并在所有经过测试的商业制剂中揭示了很大一部分非活性催化剂。通过实时监测单个酶分子的扩增反应,我们还提取了催化剂种群中活性的分布,从而揭示了各种应力下的替代失活途径。我们的方法极大地扩大了可以从单分子分辨率下的定量和功能分析中受益的酶的数量。我们预计数字puma将作为一种多功能框架,用于在诊断或生物技术应用中进行准确的酶定量。这些数字测定也可以用于研究蛋白质功能异质性的起源。
我们的研究检查了 CRISPR/Cas9 方法对参与生长素生物合成途径的色氨酸氨基转移酶 BnaTAA1 基因的突变效率。我们制作了九种 CRISPR/Cas9 构建体,这些构建体具有不同的启动子,可驱动金黄色葡萄球菌 Cas9 (SaCas9) 或植物密码子优化的化脓性链球菌 Cas9 (pcoCas9) 的表达。我们开发了一种快速有效的系统,用于评估每个构建体使用油菜毛状根引起的突变种类和频率。我们发现 pcoCas9 在突变目标位点方面比 SaCas9 更有效,并且 NLS 信号的存在使诱变机会增加了 25%。在再生系中进一步研究了突变,并确定了转基因植物中 BnaTAA1 基因的表达和基因修饰的遗传性。毛状根转化与 CRISPR/Cas9 介导的基因编辑相结合,为研究重要油料作物 B. napus 中的靶基因功能提供了一种快速而直接的系统。
摘要。背景:簇状的定期间隔短的短文重复蛋白9(CRISPR-CAS9)被认为具有有希望的临床潜力。但是,CAS9的非目标效应是其应用的主要问题。因此,我们假设如果可以在癌细胞中特异性表达人类密码子优化的链球菌Cas9(HCAS9),则可以最大程度地降低靶向基因编辑的不利影响。材料和方法:我们构建了一种嵌合腺病毒载体,AD5F35-MKP-HCAS9,并用该载体感染了被感染的人膀胱癌细胞系。感染后3-4天,在3-4天内进行了HCAS9基因表达的确认。结果:在AD5F35-MKP-HCAS9中观察到HCAS9基因表达感染了膀胱癌细胞,但在非恶性细胞中却没有。结论:我们的研究表明,AD5F35-MKP-HCAS9载体能够在膀胱癌细胞中表达具有高特异性的HCAS9基因。这些发现可能有助于最大程度地减少基因编辑脱靶影响的风险。
抽象的香蕉水果是全球数百万人的主食食物来源,这导致全球对水果的需求增加。然而,它们容易受到各种形式的恶化,这通常归因于微生物的活性,包括细菌,真菌和酵母菌,它们可能导致各种类型的变质,例如变色,纹理变化,口味,口味,等等,并可能导致救助后的损失。这项研究是为了隔离和鉴定与香蕉水果恶化有关的微生物。分别通过连续稀释,接种并分别在营养琼脂和Sabouraud右旋糖琼脂上培养了总共4个样品的真菌和细菌。将两个培养的板在37 0 C下孵育24小时和28±1°C,分别孵育五天,并分别培养。进行了真菌物种的宏观检查和微观检查,并通过与标准真菌鉴定指南进行了比较研究形态学特征并用于真菌鉴定。还进行了形态学检查,革兰事染色和生化测试以鉴定细菌。细菌计数范围为4.5 x 105至1.21 x 106 cfu/ml,表明被宠坏的样品中细菌种群较高。fusarium spp,Rhizopus spp和Candida spp是来自新鲜香蕉水果中最孤立的真菌,出现(2)25%,而曲霉和念珠菌SPP则最少孤立,出现(1)12.5%。分离株的存在可能是由于香蕉水果的粗心处理和储存条件所致烟曲霉,根茎spp,粘液spp和念珠菌spp是来自变质的香蕉水果中最孤立的真菌,出现(2)20%,而富沙属spp和spergillus flavus则是最少的,而呈(1)10%。金黄色葡萄球菌和链球菌是来自新鲜香蕉水果的最不分离的细菌,出现为(1)25%,而大肠杆菌的发生最分离的是(2)50%。金黄色葡萄球菌和链球菌是从变质的香蕉果实中分离出的细菌,出现为(1)25%,而大肠杆菌的发生最多的是(2)50%。
与锌指内核酸酶和Talens一样,CRISPR/CAS在目标部位产生双链DNA断裂。对于基因组编辑,CRISPR指南RNA经过设计,可与染色体中的目标位点进行碱基对。CAS核酸酶,结合到引导RNA,然后在由导向RNA靶向的位点上裂解两个DNA的链(图1)。该单元的默认响应是通过非同源末端连接来修复断裂,这是一种经常引入核苷酸的缺失或插入核苷酸在断裂位点上的机制,从而产生突变(图2)。但是,如果可用的同源DNA分子可用,双链断裂位点可以成为同源重组的底物,从而在修复位点引入了不同的,相关的DNA序列(图2)。这个多功能系统已从天然组件设计为更简单的系统,该系统在真菌,动物和人类细胞中发现了广泛的应用。出于大多数目的,CAS成分是一种来自链球菌链球菌的蛋白质,称为CAS9。
摘要CRISPR/CAS9系统最初是从原核生物适应性免疫系统中得出的,已作为有效的基因组编辑工具开发。它可以通过可编程SGRNA与靶DNA的特定结合对染色体DNA进行精确的基因操纵,并且具有内切核酸酶活性的CAS9蛋白将在特定位点减少双链断裂。然而,CAS9是哺乳动物细胞中的一种异物,与引入哺乳动物细胞有关的潜在风险尚不完全了解。在这项研究中,我们对HEK293T细胞中的链球菌CAS9(Spycas9)进行了下拉和质谱分析(MS)分析,并表明大多数Cas9-相关蛋白质由MS鉴定的大多数相关蛋白在核中局部局部。有趣的是,我们进一步发现CAS9蛋白包含编码核仁拘留信号(NODS)的序列。与野生型(WT)Cas9相比,CAS9的点突变变体(MCAS9)较小
在肿瘤研究领域的引言中,威廉·库利(William Cooley)是第一个证明微生物产物(特异性化脓性链球菌和铜质马斯科斯链球菌)抗肿瘤作用的人。1肠道微生物群代表一个由各种共生微生物组成的生态系统,这些微生物代谢了残留食物,肠道分泌物和消化汁和脱落结肠细胞。在大肠中,蛋白水解发酵随着饮食蛋白的高摄入而增加,从而产生诸如酚类化合物,胺,氨,N-硝基化合物和吲哚的物质产生。这些化合物可以对上皮细胞的分化和增殖产生致癌作用。2,3微生物群还影响许多人类基因的表达。例如,树突状细胞和巨噬细胞中的双歧杆菌,乳酸菌和大肠杆菌的特异性菌株会影响粘蛋白基因的表达,Toll样受体(TLR)信号传导,以及caspase表达,从而调节免疫活性和凋亡。共生细菌与免疫细胞之间的相互作用在促炎基因,原始基因,抗炎基因和肿瘤抑制基因之间建立了平衡。3-5 an
在A组链球菌(气)内,仅为链球菌链球菌具有临床意义。气体是基于独特的表面蛋白和关键毒力因子(例如透明质酸胶囊,屏蔽气体免受吞噬作用的透明质酸囊)的键入。在过去五年中估计气体负担为美国14,000至25,000例A侵入性A组链球菌疾病,估计每年1,500至2,300例死亡。在2022年夏季初,英格兰的猩红热发烧比预期的要多。在本赛季初,通知的数量上升到了异常的高度。侵入性气体(IGA)分离株分型数据的分析表明,本季节看到了各种各样的编码成熟M蛋白(EMM)基因序列类型。因此,公共卫生当局应考虑提高临床医生和公众对气体感染的意识的举措,并促进其快速诊断,分子测试和抗生素易感性测试以及标准治疗方法。
简介 在哺乳动物细胞系中产生有利的基因组特征是基因功能研究极为宝贵的策略之一。1,2 基因组编辑主要通过使用传统方法进行,例如 RNA 干扰 3,4 和同源重组。然而,除了染色体 DNA 的自发裂解之外,所需突变体的频率低和特异性低导致了位点特异性核酸酶的发明。最近,成簇的规律间隔的短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 系统为在特定基因组位点快速有效地进行基因编辑打开了一扇有希望的窗口。5,6 CRISPR/Cas9 系统由两个组件组成:向导 RNA (gRNA) 和 Cas9 蛋白。Cas9 蛋白的核酸酶活性可在任何被 gRNA 识别的基因组区域中诱导 DNA 双链断裂 (DSB)。该 gRNA 必须伴随目标基因座中相邻的原间隔基序 (PAM) 序列。7,8 NGG 是化脓性链球菌 Cas9 (SpCas9) 的 PAM 序列,是最