靶向细胞周期依赖性激酶 7 (CDK7) 为癌症治疗提供了一种有趣的治疗选择,因为这种激酶参与调节细胞周期和转录。在这里,我们描述了一种新的三取代吡唑并[4,3- d ]嘧啶衍生物 LGR6768,它在纳摩尔范围内抑制 CDK7,并在整个 CDK 家族中表现出良好的选择性。我们使用 X 射线晶体学以 2.6 Å 分辨率确定了与 LGR6768 复合的完全活性 CDK2/细胞周期蛋白 A2 的结构,揭示了活性位点内的保守相互作用。结构分析和与对接至 CDK7 的 LGR6768 的比较解释了观察到的生化选择性,这与联苯部分的构象差异有关。在细胞实验中,LGR6768 通过抑制细胞周期 CDK 和 RNA 聚合酶 II 的羧基末端结构域的磷酸化来影响细胞周期和转录的调节。LGR6768 限制了几种白血病细胞系的增殖,引发了与 CDK7 抑制相关的蛋白质和 mRNA 水平的显著变化,并在剂量和时间依赖性实验中诱导了细胞凋亡。我们的工作支持了先前的发现,并为选择性 CDK7 抑制剂的开发提供了进一步的信息。
噬菌体FD,FL和OX174是已知的最小病毒之一。它们属于具有单链圆形DNA作为其遗传物质(1-4)的一组良好特征的副觉。他们的DNA的分子量约为2 x 106,仅包含有限数量的基因。fd和fl是丝状噬菌体,在血清学和遗传上相关。ox174是一个显然与丝状噬菌体无关的球形噬菌体。dev> deNhardt和Marvin(5)通过DNA-DNA杂交进行了表明,尽管这两种类型的噬菌体(即丝状和球形)在每种类型的DNA之间没有检测可检测的同源性,尽管在每种类型内部都有很高的同源性。最近,已经推出了一种相对较快的分馏和序列大嘧啶寡核苷酸的技术。已经确定了9-20个基碱残基的FD DNA中长嘧啶裂纹的序列(6)。在本报告中,提出了来自FL和OX174 DNA的大嘧啶产物的序列。将这些序列与先前从FD DNA获得的序列进行了比较。
众所周知,植物激素的生长素和细胞分裂素是植物生长和发育的关键调节剂,它们是在芽和根,幼叶,种子,种子和水果的顶端分生组织中合成的[1-4]。它们对种子发芽,芽的形成和生长以及植物阶段的植物的不定和侧根表现出刺激的影响[1-4]。植物生物学家的大量关注致力于筛选合成起源的生长素和细胞分裂素的新有效类似物,以改善农业的生长并提高农作物的生产率。近年来,已经创建了新的生长素和细胞分裂素的新合成类似物,例如NAA(1-萘乙酸),2,4-D(2,4-二氯苯氧基酸),3,4-D(3,4-二氯苯甲乙酸),2,4,4,4,5-T
背景:嘧啶代谢是肿瘤代谢重编程的标志,而其对肺腺癌患者(LUAD)患者的预后和治疗意义的重要性仍然不清楚。方法:在这项研究中,使用各种机器学习和深度学习算法的综合框架来开发与嘧啶代谢相关的签名(PMRS)。通过全面的多摩学分析评估了其在基因组稳定性,化学疗法和免疫疗法耐药性方面的功效。也阐明了PMRS亚组之间患者的单细胞景观。随后,在LUAD细胞系中对LYPD3(PMRS模型中最重要的系数因子)的生物学功能进行了实验验证。结果:具有“随机生存森林”算法的PMRS模型表现出最佳性能,并用于进一步分析。它在各种模型评估测定中显示出极好的准确性和稳定性。与PMRS-HIGH亚组相比,PMRS评分较低的患者的生存结果更好,更稳定的基因组特征和对免疫疗法的敏感性更高。单细胞分析表明,随着PMR的增加,上皮细胞逐渐表现出具有增强的嘧啶代谢的恶性表型,而PMRS-HIGH患者表现出肿瘤免疫微环境的抑制状态。进一步的实验表明LYPD3促进了LUAD细胞系中的恶性进展。结论:我们的研究构建了PMRS模型,强调了其在LUAD患者的治疗和预后的潜在价值,并为LUAD患者的个性化精度治疗提供了新的见解。
摘要。材料的腐蚀在各个行业构成了重大挑战,从而产生了重大的经济影响。在这种情况下,嘧啶化合物出现是有希望的,无毒的,具有成本效益和多功能腐蚀抑制剂的。然而,识别这种抑制剂的常规方法通常是时必时间的,昂贵的且劳动力密集的。应对这一挑战,我们的研究利用机器学习(ML)预测嘧啶化合物化合物腐蚀抑制效率(CIE)。使用定量结构 - 特性关系(QSPR)模型,我们比较了14个线性和12种非线性ML算法来识别CIE的最准确预测指标。装袋回归模型表现出卓越的性能,达到均方根误差(RMSE)为5.38,均方根误差(MSE)为28.93,平均绝对误差(MAE)为4.23,平均绝对百分比误差(MAPE)为0.05,以预测吡啶胺化合物的CIE值。这项研究标志着腐蚀科学的显着进步,提供了一种新型,有效的基于ML的方法,可替代传统的实验方法。它表明机器学习可以快速,准确地确定有机化学抑制剂(如嘧啶止材料腐蚀)的良好状态。这种方法为行业提供了一种新的观点和可行的解决方案,以解决已经存在的问题。
海洋浮游植物,病毒和细菌之间的相互作用驱动生物地球化学循环,塑造海洋营养结构并影响全球气候。微生物产生的化合物已成为影响真核生理学的关键参与者,进而重塑微生物群落结构。这项工作旨在揭示细菌群体传感分子2- heptyl-4-喹诺酮(HHQ),该分子是由海洋γ-帕特罗氏菌杆菌spps spp。生成的,可阻止病毒诱导的cocimopol cocicocipol hh hhh cocicocipocipocipocipocipol hh spp。先前的工作已经建立了烷基素醇作为二羟基脱氢酶(Dhodh)的抑制剂,这是一种基本酶,促进了嘧啶生物合成和潜在的抗病毒药物靶标的第四步。huxleyi dhodh的N末端截断版在大肠杆菌中异源表达,纯化和动力学表征。在这里,我们显示HHQ是E. huxleyi Dhodh的有效抑制剂(2.3 nm的K I)。E。huxleyi细胞暴露于brequinar(典型的人类dhodh抑制剂)中,经历了直接但可逆的细胞停滞,这种作用反映了先前观察到的HHQ诱导的细胞静止。然而,brequinar治疗缺乏在HHQ暴露的赫uxleyi中观察到的其他显着影响,包括细胞大小,叶绿素荧光的显着变化以及免受病毒诱导的裂解的保护,表明HHQ具有尚未发现的尚未发现的生理靶标。一起,这些结果表明细菌群体传感分子在海洋生态系统中三方相互作用中的新颖而复杂的作用,为探索微生物化学信号传导在Algal Bloom调节和宿主肺病动力学中的作用开辟了新的途径。
标题:靶向角蛋白 17 介导的从头嘧啶生物合成重编程以克服胰腺癌的化学耐药性 作者:Chun-Hao Pan 1,2*、Nina V. Chaika 3*、Robert Tseng 1*、Md Afjalus Siraj 4、Bo Chen 1、Katie L. Donnelly 1、Michael Horowitz 1、Cindy V. Leiton 1、Sumedha Chowdhury 4、Lucia Roa-Peña 1、Lyanne Oblein 1、Natalia Marchenko 1、Pankaj K. Singh 3¶、Kenneth R. Shroyer 1¶、Luisa F. Escobar-Hoyos 4¶ 附属机构:1. 美国纽约州石溪市石溪大学文艺复兴医学院病理学系 2. 分子和3. 内布拉斯加大学医学中心病理学和微生物学系,内布拉斯加州奥马哈,美国 4. 耶鲁大学治疗放射学和分子生物物理学和生物化学系,康涅狄格州纽黑文,美国 *这些作者对这项工作贡献相同¶ 通讯作者 标题:K17 诱导的嘧啶生物合成驱动 PDAC 化学耐药性 关键词:胰腺癌、角蛋白 17、代谢重编程、嘧啶生物合成、二氢乳清酸脱氢酶 附加信息 财政支持:这项工作得到了胰腺癌行动网络转化研究基金的资助;资助编号 18-65-SHRO(KRS)、NCI K99-R00 CA226342-01(LFE-H)、赫什伯格基金会(LFE-H)、达蒙·鲁尼恩基金会(创新者奖 - LFE-H)、为纪念露丝·巴德·金斯伯格 (Ruth Bader Ginsburg) 而颁发的 AACR 胰腺癌研究奖(LFE-H)、以及石溪大学颁发的 Bahl IDEA 奖(KRS)。通讯作者:1. Pankaj K. Singh, PhD 940 Stanton L. Young Blvd., Oklahoma City, OK 73104 (405)-271.8001, pankaj-singh@ouhsc.edu 2. Kenneth R. Shroyer, MD, PhD 101 Nicolls Road, Stony Brook, NY 11794 (631) 444-3000, Kenneth.Shroyer@stonybrookmedicine.edu 3. Luisa F. Escobar-Hoyos, PhD, MS 15 York Street, New Haven, CT 06513 (203) 737-2003, luisa.escobar-hoyos@yale.edu
熊瑞 2, † , 张雷克 3, † , 李世良 2, † , 孙元 3 , 丁敏一 2 , 王勇 1 , 赵永亮 1 , 吴艳 3 , 尚伟娟 3 , 蒋夏明 3 , 单继伟 2 , 沉子豪 2 , 童一 2 , 徐柳新 2 , 陈宇 1 , 英乐刘 1 , 邹刚 4 , Dimitri Lavillete 4 , 赵振江 2 , 王锐 2 , 朱丽丽 2 , 肖耕夫 3 , 兰柯 1 , 李洪林 2,* , 徐克 1,4,* 1 武汉大学生命科学学院病毒学国家重点实验室,
为了使DNA形成双链结构,重复或与RNA相互作用,碱基必须能够在一致的paxern中连接,以维持DNA序列。这涉及所谓的互补碱配对。嘌呤必须始终与嘧啶搭配,以维持相互间隔的两个分子之间的操作/mal距离。The complementary base pairing that occurs is: • The purine adenine (A) always pairs with the pyrimidine thymine (T) by forming two hydrogen bonds • The purine guanine (G) always pairs with the pyrimidine cytosine (C) by forming three hydrogen bonds • In an RNA sequence, the base thymine is replaced by uracil (U), and so this pairs with adenine 反而。