摘要:研究了 LiCuFe 2 (VO 4 ) 3 的磁化率、比热容、介电常数和电极化。在零磁场下观察到 T N1 ∼ 9.95 K 和 T N2 ∼ 8.17 K 处的两个连续反铁磁转变。虽然在 T N1 处可以清楚地识别出一个介电峰,但测量的热电电流在 T N1 处也呈现出一个尖锐的峰,暗示与磁相关的铁电性。有趣的是,在 T N2 附近观察到另一个具有相反信号的热电峰,导致 T N2 以下的电极化消失。此外,电极化在外部磁场下被显著抑制,证明显著的磁电效应。这些结果表明,LiCuFe 2 (VO 4 ) 3 中的磁结构与铁电性之间存在着本质相关性,值得进一步研究其潜在机制。■ 简介
本课程涵盖了材料及其应用的电子特性的高级方面。它包括能量,热电,铁电,电介质,高电,压电,磁性和光学应用的材料。将强调电子材料在各种技术中的先进应用,这些材料的详细应用,在材料中的热量效应。线性和非线性光学性质,材料和应用,功能复合材料。
廉价清洁能源:自组织金属纳米结构实现安全廉价的能源存储......................................................................13 巨热释电效应将废热转化为电能......................................................................................14 能源存储革命:管传输启发的锂电池全固态电解质......................................................................................15 用于高能量密度电池的高性能聚合物基准固态电解质.............................................................................16 高性能、长寿命 Pd@Pt 核壳燃料电池催化剂.............................................................................17 先进的有机光伏(OPV)材料.............................................................................................18 钒液流电池的全面性能改进.............................................................................................19 消除金属卤化物钙钛矿薄膜中晶粒表面凹陷以改进太阳能电池............................................................................................................20
这项研究提供了新的有效廉价的设计系统,可在所有城市地区道路和高速公路上节省电力耗散。该系统的目的是最大程度地减少高速公路和城市道路上的废物电力。设计的系统取决于两种Arduino电路类型,即主和从。The master Arduino has an ability to detect the day light by light dependent resistor (LDR) sensor and cars movements by pyroelectric infrared (PIR) sensor, according to these conditions, the master will send a signal by XBee module works as transmitter to the following five slaves Arduinos which are waiting for a signal and receive it by XBee module works as receiver to turn ON the lights for 5 minutes then OFF it if there在街上没有汽车运动。系统可以直接安装在高速公路灯上。该系统已经过测试和应用在路灯上,系统可以完美地工作,奴隶对主Arduino信号进行了迅速有效的响应。
tantalate(Litao 3)具有独特的电气 - 光学,上将和压电特性,结合了良好的机械和化学稳定性,高光损伤阈值[1] [1],高耐光电效果,对光线性效果的高电阻,较高的非耐线范围[2],以及频率较高的跨度范围[2],以及280的频率范围2800 n00 n000 n000 n00 n000 n00 n000 n000 n00 n00 n00 n00 n00 n000从紫外线到红外[3,4]。这些特征非常适合众多应用,特别是在非线性光学范围内,它使其成为实现非线性周期性极化组件的非常有趣的材料[5] [5][6,7]。litao 3是一种非线性正晶体,双轴晶体较低,属于3 m(c 3V)三角晶体晶状体[8]。其二阶张量V(2)的元素允许另外三种类型的非线性相互作用:O-OO(D 22,D 21,D 16),E-OO(D 31,D 32)和O-EO(D 24,D 15)[8]。由于最高的非线性敏感性张量元件D 33〜16 pm/v,最常用的非线性相互作用是E-EE,其中非凡的波浪产生了另外两个非凡的波浪。此外,对于这些相互作用,仅需要非凡的索引[9]。准确地了解特殊折射率的分散体对于设计频率连接设备以及解释非线性相互作用的实验结果至关重要。通常,需要超过折射率的10 4的精度来正确预测频率转换过程的相位匹配术语[8]。
摘要:本文提议应用新开发的非分散性红外光谱(NDIR)气体传感系统,该系统由Pyroelectric红外探测器组成,以实时监视液化液体电池的热失控(TR)过程,并实现电池TR过程的预警系统。新的电动车辆安全性 - 全球技术法规(EVS-GTR)要求在严重事件发生前至少五分钟向乘客提供警告。实验结果表明,在汽车电池的过度充电测试中检测到二氧化碳和甲烷气体,并且在电池通风孔关闭时,在电池TR之前预先检测到目标气体。为了进一步探索电池TR机构,使用电池通风口打开的电池样品进行了实验。在电池温度达到电池管理系统(BMS)的公共警报温度(60℃)之前,检测到目标气体。在这项研究中,证明了NDIR气体传感器在热失控警告中对汽车电池的有益效应,并显示出巨大的应用前景和商业价值。
道路能量收集具有为多种路边数据收集和通信应用发电的潜力。根据所利用的能量来源,路边能量收集器大致可分为三类:车辆机械能、路面热量和太阳辐射。就收集技术而言,收集器可分为电磁、压电、热电、热释电、光伏和涉及液体或空气循环的太阳能集热器。本文对每种能量收集技术的文献进行了全面的最新综述。它包括有关每种收集技术的收集原理、原型开发、实施工作和经济考虑的信息。结论是,这些收集技术中有几种已经得到充分开发,可以产生可自给自足的路边电力。
通过光纤传输到光纤分路器,大约 1% 的功率从那里传输到监控探测器。剩余 99% 的功率传输到用于比较的参考光纤电缆。NIST 参考标准是电校准热释电辐射计 (ECPR),该辐射计先前已根据主要标准 NIST 激光优化低温辐射计 (LOCR) 进行了校准。ECPR 由覆盖有金黑色涂层的热探测器组成。在 1300 nm-1550 nm 的波长区域内,ECPR 的响应与入射辐射的波长无关 [12]。NIM 测量系统类似于 NIST 系统。它由波长为 1301.2 nm 和 1549.2 nm 的光纤尾纤激光源、参考光纤电缆以及用于比较 NIM 参考和传输标准的定位台组成。 NIM 参考标准,电校准绝对辐射计 (ECAR) 是一种已根据 NIM 低温辐射计校准的热设备。
