在过去 30 年中,探索强相互作用理论或量子色动力学 (QCD) 的相结构一直是相对论核物理的主要目标之一 [1]。尤其是 AGS(EOS 合作 [2])、CERN 的 SPS(NA49 [3] 和 Shine 合作 [4])以及后来的 RHIC-BES 计划(STAR 合作 [5])都试图寻找解除禁闭开始的明确信号。在实验方面,未来几年,我们将利用达姆施塔特和杜布纳的新设施,即 FAIR 项目 [6] 和 NICA 项目 [7] 继续进行这项搜索。在理论方面,由于缺乏对与 QCD 相变碰撞的定量预测和高质量的数值模拟 [8],对解除禁闭开始的搜索受到困扰。虽然这听起来可能令人惊讶,但不幸的是,在 FAIR/NICA 体制下,大多数重离子碰撞输运模拟都不允许包含相变,因此最多只能提供背景动力学 [9](一个值得注意的例外是 [10])。相反,相对论流体动力学模拟可以通过在有限重化学势下加入相变来提供新的见解,因为这种能量是必需的。流体动力学模型在核碰撞模拟中的应用历史悠久 [11– 15]。这种方法的优势在于,除了局部热平衡的基本模型假设外,基本上只有具体状态方程的选择作为物理输入。在低能级,描述弹丸和靶核相互作用的单一流体的流体动力学图像早已被用来研究定向流等集体效应以及这些效应对核状态方程的依赖性(参见,例如 [13, 14, 16])。然而,在低能重离子碰撞的纯流体动力学描述中,很少分析次级粒子的光谱,一个显著的例外是 [17] 的双流体模型方法。另一方面,在高碰撞能量下,流体动力学模型被发现适用于
B-梅森轻锥分布振幅(LCDA)是特性的基本数量 - 根据其组成夸克和胶子来构成b -mesons的内部结构。最初引入以捕获通用独家b -depay的本质,此后这些分布幅度自此在分解定理的发展中发挥了关键作用[1-8]。在众多硬性反应的领域中,分解定理突出了LCDA的内部矩(IM)的重要性,特别是在领先的贡献中。值得注意的是,IM具有至关重要的假名相关性,控制着诸如Leptonic衰变(B→γℓν)等多种过程中的领先功率表格相互作用[9],半衰弱的衰减(B→πℓν)[10]和Hadronic Decays(B→ππ)[11] [11] [11] [11]。此外,IM在构建LCDA模型中起着至关重要的作用[12-14]。当B -Meson衰减的分析超出树的水平时,对数力矩(LMS)变得必不可少,尤其是在诸如B→γℓν等精确研究中,在这些研究中,它们在其中主导了理论错误[15]。这强调了IM和LMS在促进我们对B -Meson衰减的理解中所发挥的关键作用,并强调它们在理论建模和精确计算中的重要性。尽管IMS和LMS的重要性至关重要,但我们对它们的理解仍然有限。这主要是由于它们对非扰动动力学的信息进行编码,从而使其计算从QCD的第一个原理中挑战。IM和LMS上的现有结果在很大程度上取决于模型,缺乏令人满意的约束。这种限制阻碍了B物理学中相关研究中的口音预测的精度。因此,显然必须以模型独立的方式确定这些时刻的确定,从而解决我们知识中的关键差距并推进B物理学领域。诸如晶格QCD之类的非扰动甲基甲基苯甲酸酯是
检测比MEV更重的轴线暗物质受到其小波长的阻碍,这限制了传统实验的有用体积。可以通过直接检测中等激发来避免此问题,后者的〜MEV - EV能量与检测器的大小是解耦的。我们表明,对于磁场内的任何目标,电磁轴轴的吸收率由介电函数确定。结果,可以将以前用于子GEV暗物质搜索的候选目标重新定义为宽带轴测检测器。我们发现,具有与最近测量值相当的噪声水平的kg yr暴露足以探测实验室测试目前未探索的参数空间。降低噪声仅减少几个数量级,才能对〜10 MeV - 10 eV质量范围内的QCD轴敏感。
冷却储存环外靶实验(CSR-CEE)是研究重离子碰撞在√SNN = 2.1-2.4 GEV中产生的核物质的性质,旨在揭示高巴里昂密度区域中的量子性铬差(QCD)相结构。集体流程被认为是研究高能核冲突中培养基特性的有效探针。零度热量计(ZDC)的主要功能之一是CEE中的子检测系统,是确定重离子碰撞中的反应平面,这对于测量集体流量和其他反应平面相关的分析至关重要。在本文中,我们说明了从ZDC确定事件平面的过程。最后,提出了对p,d,t,t,3 He和4 He的速度依赖性和椭圆流的速度依赖性的预测,从2.1 GEV U+U碰撞中进行了IQMD模型计算。
≲102,即使对于推测的超重元素的稳定岛,如果中子恒星是精通巨大的核,我们也希望〜10 57。因此,对于强项,似乎可能会有一个巨大的质量差距,从〜10 3到〜10 57。在本文中,我们认为,如果大自然有利于风味对称性,那么质量差距会大大降低。从这个意义上讲,电和强的物质似乎具有近似的连续质谱,从几乎零到Chandrasekhar或Oppenheimer质量限制。1值得补充的是,零压力2的强物理物理在非扰动量子染色体动力学(QCD)中,因此,原子或巨大核的基本单位应该是夸克群体的基本单位,而不是自由夸克,而不是自由夸克,前者和后者的奇特子。这将在以下各节中进行解释。
在本论文集中,我们回顾了量子计算在格点场理论中的应用的最新进展。量子计算提供了模拟格点场理论的前景,这些理论的参数范围在很大程度上是传统蒙特卡罗方法无法达到的,例如有限重子密度、拓扑项和非平衡动力学的符号问题影响范围。已经完成了 (1+1) 维格点规范理论的首个概念验证量子计算,并开发了首个 (1+1) 和 (2+1) 维格点规范理论的资源高效量子算法。实现 (3+1) 维格点规范理论(包括格点 QCD)的量子计算需要逐步改进量子硬件和量子算法。在回顾这些要求和最新进展之后,我们讨论了主要挑战和未来方向。
在核物理领域,机器学习的应用已在核实验、核天体物理和各种计算密集型任务等领域得到探索,如图 1 所示。在核物理实验中,机器学习算法已用于处理大型数据集,帮助识别粒子、改进事件重建,并允许进行实验设计和控制。在核天体物理领域,机器学习已用于分析信号,这在处理来自嘈杂太空环境的数据时特别有用。它还有助于确定致密物质的性质,这对于理解某些天体事件至关重要。机器学习还有利于应对计算密集型挑战。它已应用于强子结构和核碰撞 [参见 TWG 1 和 3]、天体物理模拟 [参见 TWG 4],尤其是应用于格点 QCD [参见 TWG 1](一种第一性原理方法),以增强我们对核物质的理解。
编辑器:A。Ringwald nambu – Jona-Lasino模型通过包含通过分形方法获得量子染色体动力学获得的运行耦合来进行调整。耦合遵循一个指数函数,在高能量碰撞的背景下,解释了Tsallis非扩展统计分布的起源。参数𝑞完全根据颜色数量和夸克风味的数量来确定。我们研究了扩展模型的几个方面,并将结果与标准NJL模型进行了比较,在该模型中,将恒定的耦合与急剧的截止组合使用,以使间隙方程正常。我们表明,适度的耦合以平滑的截止方式将模型正常,并重现式质量和衰减常数,从而提供了与标准NJL模型中几乎相同的Gell-Mann-Oakes-Renner关系。在两种模型中,关系都以相似的截止量表进行。这项工作的一个重要新颖性是从分形QCD真空中的物理解释,用于使夸克冷凝物重新归一致的运行耦合。
这项工作调查了可符合性(3Þ1) - 二维nambu - Jona-Lasinio(NJL)模型的相结构,特别关注不均匀阶段(IPS),在该阶段(IPS)中,手掌凝结物在空间上是不均匀的,在空间上是不均匀的,密切相关的Moat Moat Companimes,在这里,在这里,有偏见的不合情对离的偏爱不合适的人类关系。我们使用平均场近似值,并考虑五个不同的正则化方案,包括三个晶格离散化。为了研究IP对正则化方案和调节剂价值的选择的依赖性,对不同正则化方案内的结果进行了系统的分析。IP对所选的正则化方案表现出极大的依赖性,该方案在该模型中对不均匀阶段的结果进行了任何物理解释。相比之下,我们发现护城河制度的一个温和的方案依赖性表明其存在是NJL模型及其对称性的作用的结果,因此它也可能存在于QCD中。
复杂的langevin(Cl)动力学,其中自由度被分析扩展,提供了潜在的解决方案,因为它不依赖重要性采样,而是通过随机过程探索复杂的流形[4,5]。它是随机定量的扩展[6,7],相当于路径积分定量。cl已显示在三个[8]和四个[9]欧几里得维度的晶格场理论中起作用,其中包括严重的符号问题,包括在QCD [10-14]中,但即使在简单模型[15-17]中,它也可能失败。几年前[18-20]阐明了这种情况[18-20],这是通过在实际歧管上的复杂分布与复杂歧管上的真实和正分布之间形式关系的推导,该分布在CL过程中有效地进行了采样,从而导致了正确性的正确标准,需要证实后者验证。然而,问题仍然存在,该方法的可靠性取决于对Cl漂移中无穷大和近杆的分布行为的精确理解。最近的工作可以在例如参考。[21 - 25]。