在一篇受邀请的文章中,该文章也被选为Optica Quantum,Blumenthal的封面,以及研究生研究员Andrei Isichenko和博士后研究员Nitesh Chauhan,提出了最新的发展和未来的方向,以诱捕和冷却这些原子,这些原子对这些实验至关重要,这些原子将为这些实验带来适合他们的武器。
研究人员Harald Putterman及其同事探讨了一种使用一种称为玻色猫量子量的量子的量子校正量子校正的可能更有效的方法。这些猫码比在硬件级别上本质上是对一种错误(称为稍微翻转)的高度抵抗力,以牺牲更有可能体验另一种类型(称为相位翻转)。此错误偏差使研究人员可以设计量子误差 - 纠正仅着重于处理相位流误差的代码,从而导致总体上更有效的设计,需要更少的额外量子位。
在新系统中,两个节点是由Yttrium Orthovanatrate晶体制成的纳米制造结构(YVO4)。激光器用于激发这些晶体内的稀土金属Ytterbium原子(Yb3+),导致每个原子散发出与之纠缠的光子。来自两个独立节点的原子的光子,然后进入检测到它们的中心位置。该检测过程触发了一种量子处理方案,该方案导致在成对的ytterbium原子之间创建纠缠状态。
使用连续波的光学检测到的磁共振光谱在纤维顶传感器构型中,团队估计NV浓度和T₂*(DeCherence时间)分别为0.05 ppm和0.05μs。传感器的渐变计设置,两个传感器位于母线的两侧,在没有磁性屏蔽的情况下显示出小于20 nt/hz 0.5的噪声底。此外,磁场噪声的艾伦偏差保持在0.3μt以下,这使得在10 ms至100 s的累积时间内检测到低至10 mA的母线电流。
Google在12月发布了其柳量量芯片,该芯片大大减少了计算错误,并在几分钟内进行了计算,这将花费传统的超级计算机数百万年的时间,这标志着实用量子计算的重大进步。
在这项工作中,我们提出了一种新的方法,用于使用AutoCododer(AE)(AE)(一种未加权的机器学习技术,具有最少的先验知识)来识别一维量子多体系统中的量子相变。AES的训练是通过在整个驱动参数的整个范围内通过精确的对角线化(ED)获得的减少密度矩阵(RDM)数据进行的,因此不需要对相图的事先了解。使用这种方法,我们通过跟踪AE的重建损失的变化,成功地检测了具有多种类型的多种相变的广泛模型中的相变。AE的学习表示表示,以表征不同量子相的物理现象。我们的方法论展示了一种新的方法,可以使用最少的知识,少量所需数据研究量子相变,并产生量子状态的压缩代表。
量子计算对气候的潜在影响和环境非常重要,并且在此阶段采取措施塑造其对可持续性和积极影响的轨迹对于负责任的发展至关重要。在这个问题中,我们建议进行调查的领域,以建立共同的理解并提高可持续发展。在理解量子计算的环境和气候影响时需要考虑两个维度。首先是在生命周期中开发和使用量子计算机的直接环境影响,包括资源需求和碳足迹(Arora和Kumar,2024年)。第二是针对气候解决方案的量子计算用例的可能性(Berger等,2021; Paudel等,2022; Ho等,2024)。尽管已经有了研究量子计算的能源需求的初步步骤(参见Auffèves,2022; Meier和Yamasaki,2023),但我们需要更好地了解开发,使用和处理量子计算机的全部生命周期的环境影响。这包括能源和水消耗,碳足迹,废物处理和回收以及矿物质的因素。这项最初的研究表明,与高性能计算(HPC)相比,量子计算可能会提供优势,从而降低环境成本。例如,关于量子计算的量子计算概念每秒的经典概念仍然缺乏社区共识(例如,参见Nayak;坎贝尔;替代建议)。一些突出显示的示例(绝不是详尽的列表)是:尽管当前的期望是量子计算机可能需要明显低于其经典的能量来解决某些类别的问题(Arute等人,2019; Meier和Yamasaki,2023),但首先有必要定义和同意指标以量化这些资源以正确地声称这一优势。结果,量化量子计算机的能源效率是一个挑战。为此定义社区所接受的指标和其他与环境相关的指标仍然是一个悬而未决的问题。此外,例如,量子计算系统的支持要求,例如低温冷却本身是资源密集的,因此必须考虑到计算总体资源需求时。另一个开放的问题是资源利用率如何用于有用的量子计算机。要考虑的第二维度是量子计算解决气候和其他环境挑战的潜力。
Aggam Walia是印度快车的通讯员,报告了权力,可再生能源和采矿。他的工作打开了公司,政府和政策之间的复杂联系,通常依靠通过《 RTI法》提出的文件。节拍,他喜欢穿过德里的公园和森林,步行到……...阅读更多
我们考虑在铁磁状态的混合场三状态量子链中量子淬灭后的非平衡动力学。与Ising自旋链的类似设置相比,Potts模型具有更丰富的现象学,这部分源自频谱中的Baryonic兴奋,部分源自初始磁化和纵向场的各种可能的相对比对。我们通过结合半经典近似和精确的双向反应来获得激发光谱,并使用结果来解释我们观察到的各种动力学行为。除了恢复动态限制以及由于Bloch振荡与Ising链相似的振荡引起的Wannier-Stark局部性外,新颖的特征是淬火光谱中的Baryonic兴奋的前提。另外,当初始磁化和纵向场被错位时,限制和BLOCH振荡仅导致部分定位,而某些相关性保留了未抑制的轻孔行为,以及相应的纠缠侵入型。
在具有直接循环极化发射的发光二极管中,实现高电发光的非对称因子和高外部量子效率同时在发光二极管中具有挑战性。在这里,我们表明,基于手性钙钛矿量子点,可以同时在发光二极管中同时实现高发光的不对称因子和高外部量子效率。特定的,手性的钙钛矿具有手性诱导的自旋选择性可以同时用作局部的辐射辐射推荐中心,用于自旋极化载体的循环极化载体,从而抑制了旋转的放松,从而抑制了旋转的旋转,并改善了旋转的旋转,并促进了旋转的旋转效果,并促进了旋转的旋转效果,旋转了旋转的效果,供应型旋转效果。属性,以便可以促进产生设备的授权电源。我们的设备同时表现出高电致发光的非对称因子(R:0.285和S:0.251)和高外部量子效率(R:16.8%和S:16%),证明了它们在构建高表现性手性光源方面的潜力。