非封闭式振膜的压电MEMS扬声器有望产生高声压级(SPL),但存在严重的振膜破裂问题。本文提出了一种具有准封闭式振膜的新型压电MEMS扬声器。准封闭式振膜由对角切割但中心相连的振膜组成,振膜上涂有一层薄薄的Parylene-C。在应力分散结构的共同作用下,Parylene-C薄膜的应用可防止振膜破裂并显著减少空气损耗。成功制作了尺寸为2.5×2.5 mm 2 的小尺寸MEMS扬声器,并在711耳模拟器中对其声学性能进行了测试。在驱动电压为4 V pp 下,测得的SPL在11.8 kHz时达到最大值124 dB。在 35 V pp 的电压下,低频范围 (20 – 500 Hz) 内的 SPL 进一步增加到 88 dB。
摘要。通过跳动的心向反向散射的场的空间和时间演变,同时用连贯的光照亮了其宏观和微血管化。要执行这些血管化图像,我们基于对空间去极化的斑点场的选择性检测,主要通过多个散射生成的空间去极化斑点场的选择性检测。我们通过空间或时间估计来考虑斑点对比度的计算。我们表明,通过后处理方法,可以明显增加观察到的血管结构的信噪比,这意味着计算运动场,该方法允许选择从不同心跳时期提取的相似帧。此后来的优化揭示了血管微观结构,其空间分辨率为100μm。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jbo.28.4.046007]
锂离子电池(LIB)的快速开发面临其安全瓶颈的挑战,呼吁进行设计和化学创新。在拟议的策略中,固态电池(SSB)的开发似乎是最有前途的解决方案,但迄今为止,没有实用的SSB大规模应用。SSB的实际安全性能也受到挑战。在本文中,对LIB安全问题进行了简要审查,并强调了安全简短的LIBS。提出了准SSB化学中的系统安全设计,以征服LIB的内在安全性弱点,并根据现有研究访问效果。据信,SSB化学设计中的系统和有针对性的解决方案可以有效地提高电池安全性,从而促进LIBS的更大规模应用。
GESE最近由于其具有吸引力的光学和电性能以及地球丰富性和低毒性而成为光伏吸收材料。然而,与冲击式 - 赛车限制相比,GESE薄膜太阳能电池(TFSC)的效率仍然很低。点缺陷被认为在GESE薄膜的电和光学特性中起重要作用。在这里,我们执行第一个原理计算以研究GESE的缺陷特征。我们的结果表明,无论在GE丰富或富含SE的条件下,费米水平始终位于价带边缘附近,导致未掺杂样品的P型电导率。在富含SE的条件下,GE空缺(V GE)具有最低的地层能,在价带边缘上方0.22 eV处,(0/2)电荷态过渡水平。高密度(高于10 17 cm-3)和V ge的浅层暗示它是GESE的p型起源。在富含SE的生长条件下,SE I在中性状态下具有低层的能量,但没有引入带隙中的任何缺陷水平,这表明它既不有助于电导率,也不导致非辐射重组。此外,GE I引入了深层电荷状态过渡水平,使其成为可能的重组中心。因此,我们建议应采用富有SE的条件来制造高耐高率的GESE太阳能电池。
在膨胀宇宙学中,准德西特优雅退出使我们能够测量原始 dS 相的量子特征,特别是由谱指数 ns 参数化的尺度不变性的缺乏。在本文中,我们总结了之前关于如何在 dS 平面基态 (dSQFI) 的 dS 量子 Fisher 信息中实现底层原始标度定律的工作。在大尺度上,dSQFI 明确地将 ns 的值设置为 0.9672,而无需任何 qdS 输入。该值与张量与标量之比无关,该比的值需要模型相关的输入。此外,dSQFI 预测,在大尺度上,小规模的运行与当前的实验结果兼容。dSQFI 对小尺度的其他现象学后果将在未来的出版物中讨论。© 2022 Elsevier BV 保留所有权利。
1 天津市成像与传感微电子技术重点实验室,天津大学微电子学院,天津 300072 2 天津大学电气与信息工程学院,天津 300072 3 东南大学信息科学与工程学院,毫米波国家重点实验室,南京 210096 4 西安电子科技大学电子工程学院,高速电路设计与电磁兼容教育部重点实验室,西安 710071 5 华为技术有限公司,上海 518129 6 伦敦大学学院电子与电气工程系,伦敦 WC1E7JE,英国 7 浙江大学信息与电子工程学院,浙江省微纳电子器件与智能系统重点实验室,杭州 310027
摘要:针对传统有限控制集模型预测控制(FCS-MPC)算法因开关频率变化而导致开关损耗大的缺点,提出了一种储能准Z源逆变器(ES-qZSI)的模型预测直接功率控制(MP-DPC)。首先,基于瞬时功率理论建立ES-qZSI的功率预测模型;然后通过功率代价函数优化𝛼𝛽坐标系下的平均电压矢量;最后以平均电压矢量作为调制信号,采用直通段空间矢量脉冲宽度调制(SVPWM)技术产生相应的固定频率的开关信号。仿真结果表明,ES-qZSI每个控制周期实现六次直通动作,实现了系统的恒频率控制,验证了所提控制策略的正确性。
a 可持续和可再生电气技术研究小组(PAIDI-TEP-023),加的斯大学电气工程系,EPS Algeciras,Avda. Ram on Puyol,S/n,11202,Algeciras,加的斯,西班牙 b 米纳斯吉拉斯联邦技术教育中心,电气电子系,R. Raymundo Matoso,900,Santa Rita,Curvelo,MG,35790-000,巴西 c 可持续和可再生电气技术研究小组(PAIDI-TEP-023),加的斯大学自动化、电子和计算机架构与网络工程系,EPS Algeciras,Avda. Ram on Puyol, S/n, 11202, Algeciras, Cadiz, 西班牙 d 可持续和可再生电气技术研究小组 (PAIDI-TEP-023), 加的斯大学电气工程系, 电气工程系, ESI Puerto Real, 加的斯大学, Avda. Universidad de C adiz, N º 10, 11519, Puerto Real, C adiz, 西班牙
全稳态锂离子电池(LIB)吸引了潜在安全的存储系统。1-7此外,近年来,已经对3D打印技术进行了调整以使Libs的制造,从而允许方便地生产柔性设计,例如微型3D形状。原则上,使用简单的打印系统可以将这种微电池直接集成到包含各种电子设备的基板上。最近,已经提供了用于Lib的阴极和阳极的3D可打印墨水。8-13在此工作,Lewis等。 意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。 8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8-13在此工作,Lewis等。意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8 Kohlmeyer等。开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成14-18 Cheng等。使用高温直接ink写作技术开发了3D打印的混合固态电解质。15电解质墨水由溶解在n-丙基-N-甲基吡咯烷
本文重点研究了无风传感器的四旋翼飞行器的控制,这些飞行器需要在存在中等但未知的阵风的情况下准确跟踪低速轨迹。通过将风扰动建模为外源输入,并假设可以通过准静态飞行器运动补偿其影响,本文提出了一种创新的估计和控制方案,该方案包括一个线性动态滤波器,用于估计此类未知输入,并且只需要位置和姿态信息。该滤波器建立在未知输入观察器理论的结果之上,允许在不测量风本身的情况下估计风和飞行器状态。可以使用简单的反馈控制律来补偿由扰动引起的偏移位置误差。只要有相应的应用转子速度,所提出的滤波器就与用于消除跟踪误差的恢复控制方案无关。首先使用机器人操作系统中间件和 Gazebo 模拟器在模拟环境中检查该解决方案,然后使用四旋翼飞行器系统在真实风源下飞行进行实验验证。