量子电路的标准模型假设操作以固定的连续“因果”顺序应用。近年来,放宽这一限制以获得因果不确定计算的可能性引起了广泛关注。例如,量子开关使用量子系统来连贯地控制操作顺序。已经证明了几种临时的计算和信息理论优势,这引发了这样一个问题:是否可以在更统一的复杂性理论框架中获得优势。在本文中,我们通过研究一般高阶量子计算下布尔函数的查询复杂性来解决这个问题。为此,我们将查询复杂性的框架从量子电路推广到量子超图,以便在平等的基础上比较不同的模型。我们表明,最近引入的具有因果顺序量子控制的量子电路类无法降低查询复杂度,并且因果不确定超级映射产生的任何潜在优势都可以用多项式方法限制,就像量子电路的情况一样。尽管如此,我们发现,当利用因果不确定超级映射时,使用两个查询计算某些函数的最小误差严格较低。
作为智能制造应用的领先供应商,找到一种解决方案来管理更接近实时的大量传感器数据并轻松集成到其应用生态系统中至关重要。他们需要一种解决方案来取代传统的数据库解决方案,以满足智能制造的要求并能与其创新的 AI 解决方案集成。为了保持竞争力并扩大其客户群的能力,他们需要一个数据库系统来管理时间序列数据,提供提取和查询性能、实时快速分析、处理流和历史数据的能力以及可扩展和可互操作的架构。
我们研究了量子学习问题的查询复杂性,其中orac会形成统一矩阵的G组。在最简单的情况下,人们希望识别甲骨文,我们发现了t -Query量子算法的最佳成功概率的描述。作为应用程序,我们表明需要查询ω(n)的查询以识别S n中的随机置换。更普遍地,假设H是Oracles G组的固定子组,并从G中均匀地访问了对Oracle采样的访问,我们想了解Horacle属于哪个H caset。我们称此问题coset识别,它概括了许多众所周知的量子算法,包括Bernstein-Vazirani问题,范DAM问题和有限的场外多项式插值。我们为此问题提供了字符理论公式,以实现t- Query算法获得的最佳成功概率。一个应用程序涉及Heisenberg组,并根据N + 1的n + 1查询提供了一个问题,只有1个查询。