和协调单元(CCCR/RACC)(EEAS(2022),2004年),日期为2022年12月21日E.理事会决定(CFSP)2023/96修订决定2014/219/CFSP关于欧洲的
1)尾前扣带回(CACC)17)pars orbitalis(porb)2)尾部额叶(cmfg)18)pars triangularis(ptri)3)库氏(cuneus)(cun)(cun)19)脊髓质(perical)(perical)(perical)4) 6)较低的壁(IPL)22)前中前(PREC)7)颞下(ITG)23)前后(PCUN)8)静脉扣带回(ICC)24)阵容前扣带回(RACC)9)侧面枕骨(RACC)9)侧面枕骨(log)25 lingual ( LING ) 27) superior parietal ( SPL ) 12) medial orbitofrontal ( MOF ) 28) superior temporal ( STG ) 13) middle temporal ( MTG ) 29) supramarginal ( SMAR ) 14) parahippocampal ( PARH ) 30) transverse temporal ( TT ) 15) paracentral ( paraC ) 31) insula ( INS ) 16) pars opercularis ( pOPER )
尽管理论模型表明青少年认知控制的神经基础发生了发展变化,但实证研究很少使用多波多元纵向数据来检查与认知控制相关的大脑激活的个体内变化。我们对 167 名青少年(53% 为男性)在多源干扰任务 (MSIT) 期间的大脑激活和行为表现进行了纵向重复测量,这些青少年从 13 岁到 17 岁每年接受一次评估,为期四年。我们应用潜在生长模型来描绘大脑激活随时间变化的模式,并研究大脑激活和行为表现之间的纵向关联。我们确定了表现出不同变化模式的大脑区域:(1)涉及双侧岛叶、双侧中额回、左侧前辅助运动区、左侧下顶小叶和右侧楔前叶的额顶叶区域;和(2)前扣带皮层喙部(rACC)区域。对额顶叶区域进行的纵向验证性因子分析揭示了随时间变化的强烈测量不变性,这意味着认知控制期间的多变量功能性磁共振成像数据可以随时间推移进行可靠地测量。潜在基础生长模型表明,额顶叶激活随时间推移而减少,而 rACC 激活随时间推移而增加。此外,行为表现数据表明,与年龄相关的改善表现为四年内反应时间的个体内变异性下降。使用多元生长模型测试纵向大脑-行为关联表明,更好的行为认知控制与更低的额顶叶激活有关,但行为表现的变化与大脑激活的变化无关。目前的研究结果表明,额顶叶募集表明的认知干扰影响减少可能是大脑成熟的标志,是青少年时期更好的认知控制表现的基础。
最近的转化研究表明,纤维肌痛可能是一种自身免疫性疾病,其致病机制由外周疼痛诱发作用介导,即免疫球蛋白 G (IgG) 抗体与背根神经节中的卫星胶质细胞 (SGC) 结合。对假定的自身免疫的首次临床评估表明,与健康对照组相比,纤维肌痛患者 (FMS) 的抗 SGC 抗体 (称为抗 SGC IgG) 水平升高,并且抗 SGC IgG 与更严重的疾病状态相关。本研究的总体目标是确定抗 SGC IgG 在驱动疼痛方面的作用是否完全通过外周机制(如迄今为止间接显示的那样),还是也可以归因于中枢机制。为此,我们希望首先在更大的 FMS 队列中确认抗 SGC IgG 与疼痛相关临床指标之间的关系。其次,我们探索了这些自身抗体与 FMS 中的脑代谢物浓度(通过磁共振波谱分析 (MRS) 评估)和压力诱发的大脑疼痛处理(通过功能性磁共振成像 (fMRI) 评估)之间的关联。在 FMS 的丘脑和前扣带皮层 (rACC) 中进行了质子 MRS,并评估了各种代谢物的浓度。在 fMRI 期间,FMS 接收与低和高疼痛强度相对应的单独校准的疼痛压力刺激。我们的结果证实了抗 SGC IgG 与评估病情严重程度的临床指标之间存在正相关性。此外,与抗 SGC IgG 水平低的 FMS 相比,抗 SGC IgG 水平高的 FMS 疼痛强度更高,疾病状态更差。此外,抗 SGC IgG 水平与丘脑和 rACC 中的代谢物(如鲨肌醇)以及丘脑中的总胆碱和大分子 12 呈负相关,因此将抗 SGC IgG 水平与 FMS 脑中代谢物的浓度联系起来。然而,FMS 中的抗 SGC IgG 水平与对压痛的敏感性或大脑对诱发压痛的处理无关。总之,我们的结果表明,抗 SGC IgG 可能与自发性、非诱发性疼痛具有临床相关性。我们当前和以前的转化和临床发现可以为在 FMS 中尝试新的抗体相关治疗提供依据。
最近的翻译工作表明,纤维肌痛可能是一种自身免疫性条件,其致病机制是由外围性,疼痛引起的,可引起疼痛的疼痛作用的免疫球蛋白G(IgG)抗体,该抗体与卫星胶质细胞(SGC)在背部根神经节中结合。对假设的自动im城市的第一次临床评估表明,与健康对照相比,纤维肌痛受试者(FMS)对SGC(称为抗SGC IgG)的抗体水平升高,并且抗SGC IgG与更严重的疾病状况相关。当前研究的总体目的是确定抗SGC IgG在驱动疼痛中的作用是完全通过外围机制,正如到目前为止所显示的那样,还是可以归因于中心机制。为此,我们想首先在较大的FMS中确认抗SGC IgG和与疼痛相关的临床指标之间的关系。其次,我们探索了这些自身抗体与脑代谢产物浓度(通过磁共振光谱,MRS评估)和压力引起的大脑疼痛处理(通过FMS评估的磁共振磁共振成像,FMRI评估)。质子MRS在FMS的丘脑和前扣带回皮层(RACC)中进行,并评估了广泛代谢物的浓度。在fMRI期间,FMS收到了对应于低疼痛强度的单独校准的疼痛压力刺激。我们的结果证实了抗SGC IgG与评估条件严重程度的临床指标之间存在正相关。综上所述,我们的结果表明,抗SGC IgG可能在临床上与自发的,非诱发的疼痛相关。此外,与抗SGC IgG水平低的FMS相比,抗SGC IgG水平高的FMS具有更高的疼痛强度和较差的疾病状态。此外,抗SGC IgG水平与丘脑和RACC中的Scyllo-肌醇等代谢产物以及丘脑中的总胆碱和大分子12负相关,从而将抗SGC IgG水平与FMS大脑中的代谢物的浓度联系起来。然而,FMS中的抗SGC IgG水平与对压力疼痛的敏感性或诱发压力疼痛的大脑加工无关。我们当前和以前的翻译和临床发现可能会提供一个基本原理,以尝试在FMS中尝试与抗体相关的新疗法。
Melissa Emanus担任SUNY Downstate的出口控制和研究合规官。在这个职位上,她负责在校园内创建出口控制计划,并与执行董事合作制定和更新研究管理局办公室的政策和程序。她的努力确保了效率和遵守联邦法规以及赞助商和机构政策。在担任该职位之前,梅利莎(Melissa)在RFSUNY,CUNY和TUFTS大学担任奖项前和荣耀后的角色。她以对细节的关注,对阅读和好奇的本性而闻名,总是试图理解她的工作背后的“为什么”。Melissa喜欢与同事合作,解决问题并讨论日常挑战。在过去的一年中,梅利莎(Melissa)和两位下国同事设定了专业发展和志愿目标,每月开会以检查进度和计划合作。在他们的支持和鼓励下,梅利莎(Melissa)于2023年10月当选为研究管理局认证委员会(RACC)董事会。此外,他们合着了一篇在NCURA杂志上发表的文章。梅利莎(Melissa)在过去一年中为他们的集体和个人成就感到非常自豪。在研究管理局范围之外,梅利莎(Melissa)和她的两个7岁和9岁的男孩在海滩上找到了欢乐,这是一本好书。
研究人员对小鼠大脑中既能接收来自 rACC 的神经元投射,又能在预期镇痛期间表现出神经活动的区域进行了分析。为此,他们使用了一种名为“活跃群体靶向重组”(TRAP)的基因技术来识别 Fos 基因的表达,该基因的表达发生在神经元活跃之后。他们确定了三个大脑区域:纹状体、丘脑和丘脑底核,以及令研究人员惊讶的是,脑干中还有一对名为桥脑核(Pn)的结构。通过钙成像(检查清醒行为小鼠的神经元活动)、电生理学(记录脑切片中的神经元放电)和使用光控蛋白对 rACC-to-Pn 回路进行人工“光遗传学”激活和抑制,确定了安慰剂中 rACC-to-Pn 通路的因果作用。研究人员还利用单细胞 RNA 测序方法来观察基因表达,并表明相关的 Pn 神经元具有兴奋性并表达编码 δ-阿片受体的基因,支持安慰剂镇痛确实是由阿片类药物介导的想法。 Pn 充当大脑皮层和小脑之间的联络人。尽管已经观察到 Pn 被疼痛激活 8 ,但它们并未被认为是通常对疼痛作出反应和处理疼痛的大脑区域网络的一部分 - 称为疼痛基质。因为小脑是 Pn 神经元的主要目标,并且因为一位坚持不懈的审稿人推动了这项工作,作者接下来检查了在经历镇痛预期的小鼠中小脑皮层主要神经元 - 浦肯野细胞的活动。陈等人。确定了一组编码疼痛缓解预期的特定浦肯野细胞,并发现该细胞群的活动由 rACC-to-Pn 回路驱动(图 1b)。这并不是安慰剂镇痛的第一个动物模型;也不是第一次使用条件反射来研究疼痛 9 。但 Chen 等人无疑已经提供了迄今为止最深入的安慰剂镇痛神经解释,他们使用了目前可用于定义小鼠神经回路的所有现代高分辨率技术。安慰剂效应及其邪恶双胞胎“反安慰剂”(即个体对治疗的负面预期导致其症状恶化)对于此类解释都非常重要,因为它们在疾病和治疗的中介中普遍存在且非常强大。值得注意的是,安慰剂效应在人类中可能比在小鼠中更复杂,因为在人类中,除了条件反射之外,它还涉及基于口头指导和伴随的社会影响的期望。这里真正有趣的发现是,在所有可能的大脑区域中,Pn 和小脑负责产生期望,这一概念可能被假设