“我看到的很多是:‘我有所有这些信息。我可以获取这些信息块的摘要吗?这是传统文本分析可以做得很好的地方,就策划向大型语言模型发送的内容而言。“对于某些生成的AI方法,您给出的数据越多,这有点不当。我们发现这也可以使客户的底线受益。如果您针对要发送到大型语言模型的数据来调整它,那么它可以为您提供更好的答案,需要更少的资源,从而节省成本,从而改善业务应用程序。”
环境。直接研究授权的行使包括构建已开展的工作并提出一个可能阐明尚未解答的问题的研究项目。就活动的主题而言,很明显,金属及其在环境分区之间的转移(或动态)问题是我工作的核心。在使用同位素地球化学(与其他技术相结合)16年后,我仍然相信这种方法提供了通过其他方式难以获得的有价值的信息。要确信这一点,只需看看越来越多的介绍同位素测量(尤其是铅的同位素测量)的出版物就足够了;分析技术的出现促进了爆炸,这些技术比古老的 TIMS 更便宜、更快……而论文年份致力于研究沉积信息、地表水和大气颗粒,以了解这些区室之间的传输在埃罗省 (Etang de Thau),论文后期的时间主要致力于土壤、泥炭地和地衣等生物蓄积物的研究,松针或鱼,涉足与考古学直接相关的领域。然而,正是由于方法的多学科性和多样性,这些困难才得以克服,特别是当涉及到相互作用极其复杂、几乎无限的自然环境时。但这个问题最终真的那么重要吗?这需要土壤学、成岩作用、考古学、沉积学、古植物学、形态古生物学、生物学、生态毒理学、兽医学、海洋学、地貌学、化学、放射化学、磁学、数学建模等各个领域的先进知识......不用说,如果我有一些基础知识可以让我或多或少有效地与作为这些学科的专家,我还远未掌握所有的微妙之处和具体知识。在本文档的其余部分中,读者通常很难确定我自己的贡献,因为所提出的研究中不同参与者之间的相互作用非常接近。
金黄色葡萄球菌形成的生物膜由嵌入由蛋白质,多糖,脂质和细胞外DNA(EDNA)的基质中的细胞组成。生物膜相关的感染很难治疗并可以促进抗生素耐药性,从而导致负面的医疗保健结果。edna有助于金黄色葡萄球菌的稳定性,生长和免疫渗透特性。edna是由自溶的释放的,自溶的是由murein水解酶介导的,这些水解酶通过霍林样蛋白形成的膜孔进入细胞壁。金黄色葡萄球菌的EDNA含量在单个菌株之间有所不同,并且受环境条件(包括存在抗生素的存在)影响。edna通过充当促进蛋白质细胞和细胞 - 细胞相互作用的静电网,在生物膜的发育和结构中起重要作用。由于埃德娜(Edna)在生物膜中的结构重要性及其在金黄色葡萄球菌分离株中的普遍存在,因此它是治疗剂的潜在靶标。用DNase处理生物膜可以消除或大大减少它们的大小。此外,靶向与EDNA结合并稳定的DNABII蛋白的抗体也可以分散生物膜。本综述讨论了有关Edna在金黄色葡萄球菌中的发行,结构和功能的最新文献,此外还讨论了针对Edna靶向生物膜消除的潜在途径的文献。
中性粒细胞和巨噬细胞是已知的主要细胞类型(ET),由DNA和组蛋白组成(主要是其瓜氨酸形式),并由不同的蛋白质(1)进一步装饰。当中性粒细胞经历一种称为Netosis的特殊细胞死亡时,它们会施放中性粒细胞外陷阱(NETS),其中包括蛋白质,例如中性粒细胞弹性酶(NE)和脊髓过氧化物酶(MPO)(2)。类似地,巨噬细胞因梅特病而死亡,铸造巨噬细胞外陷阱(MetS),与网络相比,仅表现出较小的差异,例如较短的染色质片段和更快的形成(3,4)。其他细胞类型(例如嗜酸性粒细胞和淋巴细胞)也可以铸造ET,尽管它们的意义不足。网和大都会是在感染的背景下首先发现的,因为它们能够捕获细菌并限制其传播(1),但它们也参与了许多炎症和自身免疫性疾病以及癌症(5)。两篇评论论文研究了肿瘤细胞与网络之间的串扰。Zhao和Jin回顾了网络在不同肿瘤模型和人类患者中促进肿瘤进展中的作用。网络相关的HMGB1或NE可以分别与TLR9或TLR4结合。这会触发肿瘤细胞增强其增殖,增加线粒体生物发生,并促进细胞因子(例如IL-6和IL-8)的释放,而IL-6和IL-8则依次将中性粒细胞产生更多的网。慢性炎症会增加网络的形成,由于蛋白酶的存在,例如MMP-9或蛋白酶3(PR3),它会重塑细胞外基质(ECM)。网也影响对治疗的抵抗力。降解的ECM蛋白(特定于层粘连蛋白)促进了肿瘤细胞的出口。化学疗法或放疗后,死亡的肿瘤细胞释放了增加净形成的潮湿。染色质的网格可保护肿瘤细胞免受NK细胞或CD8+ T细胞细胞毒性的影响,这可能是通过网络相关的PD-L1。
通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,
胶原蛋白是哺乳动物中最丰富的蛋白质,广泛表达于组织器官和肿瘤细胞外基质中。肿瘤胶原主要聚集在肿瘤基质或肿瘤血管内皮下,由于肿瘤血管的结构破碎,肿瘤胶原暴露在外。通过血管的通透性和滞留性(EPR)效应,胶原结合大分子容易与肿瘤胶原结合并在肿瘤内聚集,使得肿瘤胶原成为潜在的肿瘤特异性靶点。近年来,大量研究证实,靶向肿瘤细胞外基质(TEM)内的胶原可增强免疫治疗药物在肿瘤处的蓄积和滞留,显著提高其抗肿瘤疗效,并避免严重的不良反应。本文对已知的胶原结合结构域(CBD)或蛋白(CBP)、其作用机制及其在肿瘤靶向免疫治疗中的应用进行综述,并展望未来的发展。
Asteraceae是最大的被子植物家族,因其出色的药用,园艺和观赏价值引起了广泛的关注。然而,关于星形科植物的研究由于复杂的遗传背景而面临挑战。随着测序技术的持续发展,从星状科物种中积累了大量的基因组和遗传资源。这促使对这个多样化的植物群中对全面的基因组分析的需求。为了满足这种需求,我们开发了Asteraceae基因组学数据库(AGD; http://cbcb.cdutcm.edu.cn/agd/)。AGD充当集中和系统的资源,赋予了各种领域的研究人员,例如基因注释,基因家族分析,进化生物学和遗传育种。AGD不仅包含高质量的基因组序列和细胞器基因组数据,而且还提供了广泛的分析工具,包括BLAST,JBROWSE,SSR FINDER,HMMSEARZER,HMMSEARCH,HEMMAP,HEATMAP,PRIMER3,PLANTIMSISMASH和CRISPRCASFINDER。这些工具使用户能够方便地查询,分析和比较各种星际科中的基因组信息。AGD的建立在推进Asteraceae基因组学,促进遗传育种并通过为研究人员提供全面且用户友好的基因组资源平台来维护生物多样性方面具有巨大的意义。
Darktrace 免疫系统利用开放式架构,无缝接入不断发展的多样化生态系统。通过一键式集成,该平台可以立即获取新形式的遥测数据,在既定的工作流程中分享定制的 AI 见解,并与各种技术进行互操作,以在电子邮件系统、内联防御和协作平台上提供自主响应。除了越来越多的一键式集成之外,Darktrace 免疫系统还有多种数据获取和输出方法,以最适合您的生态系统。