JHR 是 CEA 卡达拉什正在建造的新型材料测试反应堆。目前,堆芯的中子特性是利用 HORUS3D/N 确定性方案计算的。该方案的工业路线采用两步法,首先是 APOLLO2 MOC 格子计算,然后是基于扩散理论的 CRONOS2 堆芯计算。APOLLO3 ® 是 CEA 新的确定性计算平台,它采用了先进的计算方法。在本文中,正在使用 APOLLO3 ® 带来的新方法为 JHR 建立一个新的参考计算方案。该计算方案通过 TRIPOLI4 ® 执行的参考随机模拟进行了验证。与在 APOLLO3 ® 中模拟 HORUS3D/N 方案的方案结果相比,格子步骤的改进可以显著减少燃料元件和 Hf 控制棒的吸收率偏差。新方案的主要变化在于使用子群自屏蔽法替代精细结构等效法。这些变化与细化几何网格和 383 能级组结构有关。来自晶格台阶的压缩截面用于计算插入五根 Hf 控制棒的 2D JHR 堆芯配置的中子平衡。新的计算方案中添加了堆芯反射器超级晶胞,以产生细化的反射器截面。使用较粗的 41 组结构执行的 MOC 2D 堆芯计算保留了晶格计算的改进,并可以更好地预测反应性和反应速率。下一步将使用包括堆芯实验装置在内的带耗尽层的 3D Sn MINARET 全堆芯计算。关键词:APOLLO3 ®、JHR、确定性计算方案、共振自屏蔽方法。
影响疾病的严重程度,进而影响辐射灵敏度的程度。在不同突变的患者中观察到辐射敏感性的这种变异性,反映了这些遗传变化对病情的多种影响(29)。目前对具有多种突变的患者的DSB修复效率和辐射敏感性的研究目前有限或不可用。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
本文是一系列研究,该系列研究了从其新生的原始磁盘(PPD)中积聚的行星的观察性外观。我们评估了在辐射流体动力(RHD)类似物中确定的气温分布与通过蒙特卡洛(MC)辐射转运(RT)方案重新计算的差异。我们的MCRT模拟是针对全局PPD模型进行的,每个模型由嵌入在轴对称全局磁盘模拟中的局部3D高分辨率RHD模型组成。我们报告了两种方法之间的一致性水平,并指出了几个警告,这些警告阻止了温度分布与我们各自的选择方法之间的完美匹配。总体而言,一致性水平很高,高分辨率区域的RHD和MCRT温度之间的典型差异仅为10%。最大的差异接近磁盘光球,光学密集区域和薄区域以及PPD的遥远区域之间的过渡层,偶尔超过40%的值。我们确定了这些差异的几个原因,这些原因主要与用于流体动力模拟(角度和频率平衡以及散射)和MCRT方法(忽略内部能量对流和压缩和扩展工作的典型辐射转移求解器的一般特征有关)。这提供了一种清晰的途径,以减少未来工作中系统的温度不准确。基于MCRT模拟,我们最终确定了整个PPD的通量估计值的预期误差和从其环境磁盘中积聚气体的行星的预期误差,而与山相中的气体堆积量和使用模型分辨率无关。
结果:在51例患者中,有25.5%的患有笨重的疾病,而64.7%的患者在RT时患有III/IV期。仅针对所有疾病部位的综合BRT均递送至51%的患者,而29.4%的患者则被全身治疗。中位随访时间为10.3个月(95%CI:7.7-16.4)。在卡尔-T输注后30天时,总体响应率(ORR)为82.4%。中位总生存期(OS)为22.1个月(6.6个未达到),中位无进展生存期(PFS)为7.4个月(5.5-30)。OS/PFS分别为1年的80%(66-99)/78%(64-87),分别为2年的59%(44-71)/54%(40-67)。综合的RT与疾病的所有部位有关,与改善的PFS和OS相关,P≤0.04。此外,ECOG≥2和III/IV期疾病预测OS差(P≤0.02)。疾病大量,IPI≥3和非GCB组织学是疾病的预测因子不良 -
电动汽车低碳充电的选项包括从现有的电网网络充电使用PV或其他可持续电源,从当地PV发电的专用充电点充电,或直接和独立地使用车载PV(PV供电车辆)。为了促进减少运输部门的CO 2排放并增强PV市场的扩展,IEA PVPS任务17的目的是阐明PV利用在运输中的潜力,并建议如何实现这些概念。任务17的范围包括各种PV驱动的车辆,例如乘用车,轻型商用车,重型车辆和其他车辆,以及用于电气系统和基础设施的PV应用,例如使用PV,电池和其他电力管理系统充电基础设施。
摘要背景:放射肿瘤学和成像领域的新技术和新方法为增强局部区域治疗的益处、将治疗范围扩大到新的患者群体(例如患有寡转移性疾病的患者)以及降低正常组织毒性提供了机会。此外,已经出现了可与放射疗法相结合的新型药物,并且可以研究放射相关生物标志物的鉴定以改进治疗处方。最后,人工智能 (AI) 功能的使用还可以改善治疗质量保证或处方放射剂量的便利性。所有这些潜在的进步都为学术临床研究人员带来了机遇和挑战。方法:最近,欧洲癌症研究与治疗组织在来自欧洲和北美的多个利益相关者的会议上讨论了这些主题。以下五个主题是基于放射生物学的生物标志物、新技术(特别是质子束治疗)、全身和放射治疗的联合治疗、癌症管理
有机朗肯循环是将低品位热源转化为电能的可用解决方案之一。然而,由于膨胀机的特殊设计,工厂的开发往往非常昂贵。通常,设计 ORC 工厂的输入参数是热源和冷源的温度和功率。它们决定了工作流体、压力和温度的选择。然后根据所需的操作参数设计膨胀机。使用市场上容易买到且性能众所周知的标准涡轮机可以降低开发和制造成本。然而,必须对 ORC 进行调整,以使膨胀机在最佳条件下工作。对于太阳能聚光热源,可以通过调整聚光系数和集热器总面积来调整温度和功率。在本文中,考虑使用给定的燃气轮机作为 ORC 的膨胀机。了解涡轮机在空气中的性能后,基于相似规则寻找不同流体的 ORC 的最佳运行参数(压力、温度、流量和转速)。调整的目的是保持工作流体与空气相同的密度变化、相同的入口速度三角形和相同的入口马赫数。然后使用 CFD 模拟计算涡轮机的性能图,并显示最大等熵效率接近空气,约为 78%。
上下文。太阳系中气体巨头的内部模型传统上假设一个完全对流的分子氢包膜。,朱诺任务的最新观察结果表明,木星的分子氢包膜可能会耗尽碱金属的耗竭,这表明稳定的辐射层可能存在于千巴水平。最近的研究表明,深稳定的层有助于调和各种木星观测,包括其大气水和二线丰度以及其区域风的深度。但是,用于推断稳定层的不透明表通常被过时且不完整,从而使深辐射区域所需的精确分子氢包膜组成不确定。目标。在本文中,我们确定可以导致木星和土星在千巴尔水平的辐射区形成的大气组成。方法。我们计算了覆盖高达10 5 bar的压力,包括太阳系气体巨头中最丰富的分子以及自由电子,金属氢化物,氧化物和原子质物种的贡献,其中包括最丰富的分子。这些表用于计算木星和土星分子氢化膜的罗斯兰均值不透明,然后将其与维持对流所需的关键平均不透明度进行了比较。结果。我们发现,辐射区的存在是由木星和土星大气中的K,Na和Nah的存在控制的。相比之下,对于土星,K和Na所需的丰度低于10-4倍太阳能。对于木星,K和Na的元素丰度必须小于10 - 3倍太阳能才能形成辐射区。
a 法国西部癌症研究所放射肿瘤学系,44800 Saint Herblain,法国 b 法国西部癌症研究所心脏病学系,44800 Saint Herblain,法国 c US2B 实验室,生物科学和生物技术部,UMR CNRS 6286,UFR Sciences et Techniques,2, rue de la Houssini ` ere,44322 Nantes,法国 d 法国雷恩 Eug ` ene Marquis 中心放射肿瘤学系,35000 Rennes,法国 e 法国布雷斯特大学医院中心 (CHU) 放射肿瘤学系,29200 Brest,法国 f 法国西部癌症研究所放射肿瘤学系,49000 Angers,法国 g 法国西部癌症研究所放射学系h 放射科 - 无创心血管成像,大学医院中心 (CHU),44000 南特,法国 i 医学物理学系,西部癌症研究所,44800 圣埃尔布兰,法国