摘要 - 在这项工作中,我们提出了一种破坏性节俭的激光雷达感知数据流,该数据流产生而不是感知环境的一部分,这些部分是基于对环境的广泛培训,或者对整体预测准确性的影响有限的。因此,所提出的方法将传感能量与训练数据进行交易,以获取低功率机器人和自动导航,以便用传感器省将,从而在一次电池充电时延长了其寿命。我们提出的为此目的提出的生成预训练策略称为径向掩盖的自动编码(R-MAE),也可以在典型的激光雷达系统中很容易实施,通过选择性激活和控制在现场操作过程中随机生成的角区域的激光功率。我们的广泛评估表明,使用R-MAE进行预训练可以重点关注数据的径向段,从而比常规程序更有效地限制了空间关系和对象之间的距离。因此,所提出的方法不仅降低了传感能量,而且还提高了预测准确性。例如,我们对Waymo,Nuscenes和Kitti数据集进行了广泛的评估表明,该方法在跨数据集的检测任务的平均精度提高了5%,并且从Waymo和Nuscenes转移到Kitti的检测任务的平均精度提高了4%。在3D对象检测中,它在KITTI数据集中的中等难度水平下,在AP中最多可增强小对象检测。即使使用90%的径向掩蔽,它在Waymo数据集中所有对象类中的MAP/MAPH中都超过了基线模型。此外,我们的方法在Nuscenes数据集上分别获得了MAP和NDS的3.17%和2.31%的提高,这表明了其在单个和融合的LIDAR相机模态方面的有效性。代码可在https://github.com/sinatayebati/radial Mae上公开获取。索引项 - lidar预训练,掩盖自动编码器,超有效的3D传感,边缘自治。
可再润滑的滚珠轴承具有法兰铸铁外壳,该外壳通过外部螺栓固定在阻尼器框架上。该轴承能够承受高径向载荷,可用于高压或高速应用。密封件可保护轴承滚珠免受环境影响,使该轴承成为肮脏环境中应用的最佳选择。外部润滑脂嘴可轻松为轴承再润滑。
固定点。该固定点称为相互作用的“极点”,因此这种中心力可能是吸引的(即负的)或排斥的(即正的),它总是指向径向。这种力的大小完全取决于力作用的粒子与固定点的距离。让我们假设作用于质量粒子上的力
“所以我们只需要叠加径向场线,这些场线是通过在三维笛卡尔/球面/圆柱坐标系中取电势梯度的负值而得到的,并且垂直于等势线,即所有具有相同势差的点的轨迹点。很简单……我们就这么做!……哦,等等……什么?。”
本文的目的是证明对球中Schr odinger操作员的第一个特征值的定量不平等。更准确地说,我们优化了操作员L V的第一个特征值λ(v),在v上,在v上,在l 1和l∞约束下,具有dirichlet边界条件相对于电势V。该解决方案已知是中心球的特征功能,但是本文旨在证明以下形式的急剧生长速率:如果V ∗是最小化器,则λ(v)-λ(v)(v ∗)⩾c || V -V ∗ || 2 L 1(ω)对于某些C>0。证明依赖于两个衍生物的概念进行形状优化:参数衍生物和形状衍生物。我们使用参数导数来处理径向竞争者,并形成衍生物来处理球的正常变形。然后建立二分法,以将结果扩展到所有其他电位。我们开发了一种处理径向分布的新方法和一个比较原理,以处理球在球处的二阶形状衍生物。最后,我们在这种情况下添加了有关二阶形状衍生物的强制性规范的一些评论。
固定点。固定点称为相互作用的“极点”,因此这种中心力可能很有吸引力(即负)或排斥(即阳性),它总是以径向意义为导向。该力的大小仅取决于力从固定点起作用的粒子的距离。让我们假设质量粒子上的力
摘要:变速箱是一种机械动力传输装置,最常用于获得速度和扭矩方面的机械效益。变速箱由不同类型的齿轮组成,这些齿轮按级联顺序组装以执行预期任务。变速箱内任何旋转部件发生故障都将终止与其相关的机械系统的工作状态。这会导致行业服务中断,从而产生昂贵的赔偿。特别是在飞机发动机中,它用作附件驱动器,为液压、气动和电气系统提供动力。这促使人们监测变速箱的健康状况。本文简要回顾了 GHCM(变速箱健康状况监测)、变速箱故障、时域特征、频域特征、时频域概述;特征提取技术和故障分类技术。本研究的结果是提供有关变速箱健康状况监测的简要信息。关键词:变速箱故障、GHCM、故障分类技术。1. 简介变速箱是一种附件驱动器,是飞机燃气涡轮发动机的一部分。附件变速箱为液压、气动和电气系统提供动力。它驱动燃油泵、油泵和测速发电机。附件齿轮箱通过径向驱动轴与高压压缩机相连,齿轮箱所需的动力来自连接发动机涡轮和高压压缩机部分的中心轴。附件单元的动力从旋转的发动机轴通过内部齿轮箱输送到外部齿轮箱,内部齿轮箱为附件提供运动并将附件齿轮传动分配给每个驱动单元 [1]。图 1 显示了齿轮箱在飞机发动机中的安装位置。在一些早期的发动机中,径向轴用于驱动每个附件单元。虽然它提供了将附件单元放置在理想单元中的灵活性,但它降低了单个齿轮的动力传输。它需要使用大型内部齿轮箱。由于高压压缩机出口和燃烧室之间可用的空间很小,内部齿轮箱的位置很复杂。由于内部齿轮箱和径向驱动轴的安装(干扰气体流动)导致的热膨胀和发动机性能下降,在涡轮区域比压缩机区域造成了更大的问题。对于任何给定的燃气涡轮发动机,涡轮面积都小于压缩机面积,这使得将变速箱安装在压缩机物理提供的空间内更加容易。径向驱动轴的主要用途是将驱动力从内部变速箱传输到外部变速箱。反之亦然,即将高启动扭矩从启动器传输到高压压缩机系统,以启动发动机。最好使驱动轴直径最小,以减少气流干扰。直径越小,轴必须旋转得越快才能产生相同的功率。但是,直径有一个限制,因为它会增加内部应力并增加更大的动态问题,从而导致振动。中间齿轮箱的使用取决于发动机结构的设计及其尺寸。当没有提供将径向轴直接连接到外部齿轮箱的措施时,中间齿轮箱组装在内部齿轮箱和外部齿轮箱之间。外部齿轮箱为每个附件单元提供安装面,并由附件驱动器组成。外部齿轮箱的位置取决于几个因素。它包裹在发动机的低前部区域周围,以减少飞机飞行时的阻力效应,并且由于它位于下部,维护人员很容易接近。如果任何附件单元发生故障,停止旋转,则可能导致故障
