Figure 1 – Schematic of wound healing in humans ........................................................ 3 Figure 2 – Schematic on DNA hairpin-based shape memory hydrogel............................ 5 Figure 3 – Schematics on how different studied self-healing systems work..................... 7 Figure 4 – DNA structure and the complementary base-pairing system ........................ 10 Figure 5 – Examples of DNA nanotechnology构造........................................................................................................................................................................................................................................................................................................................................................................................................................................................... 13图7 - 3D DNA折纸曲柄滑块结构.................................................to attach the DNA oligonucleotide crosslinks to the pAA chain ........................................................................................ 17 Figure 10 – Schematic illustrating how a free radical polymerization progresses........... 18 Figure 11 – DNA hairpin-dependent expansion of the pAA hydrogels in the 2017 study by Schulman et al................................................................................................................................................................................................................................................................................ 19图12 - PAA聚合反应的示意图............................................................................................................... 60分钟后的水凝胶形成.... 28图16 - 优化的PAA-SSDNA水凝胶............................................................................................................................................................................................... 29图17 - 对PAA凝胶优化的不同冷却设置的定性分析结果的结果.................................................................................................................................................................................................................................................................................反应混合物中存在的ssdna ................................................................................................................................................................................................................................................................................................................................................................................................................................. 30
简介对于面临不断变化的环境的现有企业来说,平衡渐进式和激进式商业模式创新 (BMI) 是一项关键活动 (Amit & Zott, 2012; Egfjord & Sund, 2020; Khanagha, Vol berda, and Oshri, 2014; Sund, Bogers, & Sahramaa, 2021)。激进式创新会导致不连续性,而渐进式创新则建立在现有基础之上 (Bucherer, Eisert, & Gassmann, 2012)。在稳定且竞争较少的环境中,现有企业可以通过围绕现有能力进行渐进式改进 (Jensen & Sund, 2017) 或协调现有资源 (Sund, Barnes, & Mattsson, 2018) 来建立可持续的竞争优势。在竞争激烈的环境中,这变得更加困难,管理者可能会寻求探索更激进的 BMI 形式,以摆脱这种竞争。有一种环境使得企业难以建立可持续的竞争优势,那就是竞争异常激烈的环境。D'Aveni (1994) 将这种环境定义为“一种剧烈变化的环境,灵活、积极、创新的竞争对手可以轻松、迅速地进入市场,侵蚀大型和老牌企业的优势”(D'Aveni,1994:6)。在竞争异常激烈的市场中,这些老牌企业(现有企业)只能通过逐步改变其商业模式来获得暂时的竞争优势。而对商业模式进行更彻底的改变可能会使企业从竞争对手中脱颖而出,并创造更持久的竞争优势。但是,如果管理者误解了环境的真正性质,该怎么办?
摘要最近,通过实验证明,带有旋转的分子具有巨大的潜力作为量子信息处理的基础,这是由于它们具有可调性,可移植性和可伸缩性的实质性优势。在这里,我们提出了一个理论模型,基于一个含有一个自由基的分子中开放量子系统的理论,该理论可以与由于光激发和间隔系统交叉而与分子的另一部分相互作用。初始状态是自由基1 2 -spin的经典混合物,自由基和三重态之间的交换相互作用会产生旋转相干状态,该状态有可能用于Qubit -Qutrit量子纠缠栅极。我们对时间分辨的电子顺磁共振光谱的计算与高温下自由基分子的相关实验结果表现出良好的定性一致(〜77 K(〜77 K,液氮的沸点)。因此,这项工作奠定了一个固体理论基石,用于在根部含有的分子材料中进行光学驱动的量子栅极操作,旨在用于高温量子信息处理。