原创文章 增强年轻学习者的运动教育能力:通过教学游戏来理解“无脑学校”的耻辱 INDRA SHOLEHUDIN 1* , SONI NOPEMBRI 2 , YUDANTO 3 , FERRY FENDRIAN 4 , TIAN KURNIAWAN 5 1,2,3 印度尼西亚日惹大学体育教育系 4 体育系教育,Sekolah Tinggi Keguruan Dan Ilmu Pendidikan Pasundan,印度尼西亚 5 体育科学系,Universitas Pendidikan Indonesia,印度尼西亚 在线发布:2025 年 1 月 31 日 接受出版:2025 年 1 月 15 日 DOI:10.7752/jpes.2025.01021 摘要:发展运动技能是运动技能的重要组成部分影响学生身体能力和协调性的教育。运动可教育性是指个人通过指导和练习学习和掌握运动技能(身体动作)的能力。这一概念包括认知能力(思考和理解)、感官知觉(如视觉、听觉和本体感觉)和肌肉协调。然而,在印度尼西亚,社会对体育学校的体育活动与认知能力较低存在偏见,体育学校通常被称为“无脑学校”。理解教学游戏 (TGFU) 方法强调理解游戏战术和策略,以增强学生的运动技能。尽管有这样的前景,但大多数关于 TGFU 的研究主要集中在认知发展上,而培养运动技能可教育性的作用尚未得到充分探索。目的:因此,本研究旨在研究 TGFU 方法对小学生运动可教育性的影响。材料和方法:采用准实验设计,分为三组,即对照组(体育活动最少的学生)、常规体育活动组和从事基于 TGFU 的体育活动的实验组。 90 名 9-11 岁的小学生参加了这项研究,每组 30 名学生。使用运动可教育性测试、协调性测试和游戏表现评估工具 (GPAI) 来评估运动技能的发展。结果:研究表明,参加基于 TGFU 的体育项目的学生的运动技能,特别是协调性和精细运动技能有显著提高。与对照组和常规体育活动组相比,实验组取得了更大的进步。结论:这项研究挑战了体育运动与认知或运动技能卓越不相容的偏见。通过展示基于 TGFU 的学习在运动和认知维度上的双重好处,分析概述了 TGFU 是体育课程的宝贵补充,它促进了年轻学习者的全面发展。关键词:TGFU、运动可教育性、体育、决策、小学生 简介 运动技能发展是教育的重要组成部分,尤其是在年轻学习者的成长时期(Rahmanto 等人,2024 年)。尽管运动技能很重要,但传统的教育模式往往会限制通过游戏增强身体认知能力的机会(Revilla 等人,2021 年)。发展运动技能不仅可以增强身体能力,还有助于提高整体幸福感和学业成绩(Aliriad,2023 年)。此外,运动技能与体育学习中的自尊心密切相关(Shakty 等人,2022 年),强调了对学生心理健康的影响。运动协调也通过执行功能的中介作用与学业成绩相关联(Schmidt 等人,2017 年)。这些证据表明,运动技能支持身体和认知发展,从而增强了教育价值。运动可教育性是指个人通过指导和练习学习和掌握运动技能(身体动作)的能力。这一概念涵盖认知能力(思考和理解)、感官知觉(如视觉、听觉和本体感觉)和肌肉协调。然而,在印度尼西亚,一种普遍的社会偏见将体育学校的体育活动与较低的认知能力联系起来,并经常被称为“无脑学校”(Supandri,2009 年)。这种偏见削弱了将体育教育纳入更广泛课程的重要性,并贬低了从事体育运动的学生的智力潜力。教学游戏理解 (TGFU) 方法是一种教学框架,将重点从传统的和基于技能的体育教育转移到以理解为导向的方法。它比传统方法更有效地促进批判性思维、自主性和身体素养(Doozan & Bae,2016 年)。通过强调游戏战术和策略,TGFU 使学生能够更深入地理解游戏玩法,从而提高运动和认知技能。实施 TGfU 进一步要求教师成为学生思维过程的熟练观察者和促进者(Mitchell & Collier,2009)。尽管这一证据表明,运动技能有助于身体和认知发展,从而增强了教育价值。运动可教育性是指个人通过指导和练习学习和掌握运动技能(身体动作)的能力。这一概念包括认知能力(思考和理解)、感官知觉(如视觉、听觉和本体感觉)和肌肉协调。然而,在印度尼西亚,一种普遍的社会偏见将体育学校的体育活动与较低的认知能力联系在一起,并经常被称为“没有大脑的学校”(Supandri,2009 年)。这种偏见削弱了将体育教育纳入更广泛课程的重要性,并贬低了从事体育运动的学生的智力潜力。教学游戏理解 (TGFU) 方法是一种教学框架,将重点从传统的和基于技能的体育教育转移到以理解为导向的方法。它比传统方法更有效地促进批判性思维、自主性和身体素养(Doozan & Bae,2016 年)。通过强调游戏战术和策略,TGFU 使学生能够更深入地理解游戏玩法,从而提高运动和认知技能。实施 TGfU 进一步要求教师成为学生思维过程的熟练观察者和促进者(Mitchell & Collier,2009)。尽管这一证据表明,运动技能有助于身体和认知发展,从而增强了教育价值。运动可教育性是指个人通过指导和练习学习和掌握运动技能(身体动作)的能力。这一概念包括认知能力(思考和理解)、感官知觉(如视觉、听觉和本体感觉)和肌肉协调。然而,在印度尼西亚,一种普遍的社会偏见将体育学校的体育活动与较低的认知能力联系在一起,并经常被称为“没有大脑的学校”(Supandri,2009 年)。这种偏见削弱了将体育教育纳入更广泛课程的重要性,并贬低了从事体育运动的学生的智力潜力。教学游戏理解 (TGFU) 方法是一种教学框架,将重点从传统的和基于技能的体育教育转移到以理解为导向的方法。它比传统方法更有效地促进批判性思维、自主性和身体素养(Doozan & Bae,2016 年)。通过强调游戏战术和策略,TGFU 使学生能够更深入地理解游戏玩法,从而提高运动和认知技能。实施 TGfU 进一步要求教师成为学生思维过程的熟练观察者和促进者(Mitchell & Collier,2009)。尽管
知道:照顾者了解对孩子的挑战行为平静地反应的重要性:护理人员更多地了解身体惩罚和言语虐待和言语虐待的损害影响,以及有其他替代方案对孩子和父母都更好地工作的事实:对儿童和父母的效果更好:护理人员会做到的:护理人员可以与儿童进行策略的态度来指导他们的策略,以指导他们的策略,以指导他们的策略来指导他们的行为:适当。
果蝇Melanogaster已被确立为研究人类疾病的可靠模型。然而,此类研究的各种设计以及菌株的不同起源显着导致菌株之间的代谢和分子差异。帕金森氏病(PD)是一种神经退行性疾病,涉及多巴胺能神经元的丧失,导致各种运动和非运动症状,包括但不限于Bradykinesia,姿势不稳定,认知能力下降,认知能力下降和胆汁性营养不良。长期暴露于毒素(例如烤)可以诱导神经元细胞死亡。我们通过直接喂养烤烤面包酮的食物向果蝇Melanogaster野生型菌株开发了一种零星的PD模型,以前已证明该菌株会导致神经元细胞死亡,并用于模仿果蝇中的PD。在两种野生型菌株(俄勒冈-R和Canton-S)中暴露于鱼藤酮后,监测其攀爬能力和寿命的差异。我们发现,与年龄匹配的广州苍蝇相比,俄勒冈-R紫红酮暴露时的运动缺陷程度更高。我们还观察到,与俄勒冈-r蝇相比,广州蝇(烤面包酮喂养的和非洛诺酮)的生存百分比较低。但是,广州蝇中的攀爬缺陷并不像俄勒冈-r蝇中那样明显。在不同野生型果蝇菌株中涉及这种差异效应的机制尚待探索,并可能对属于不同人口统计学的PD患者的差异症状提供视角。
此预印本版的版权持有人于2025年1月28日发布。 https://doi.org/10.1101/2025.01.27.635175 doi:Biorxiv Preprint
2025 年 1 月 28 日——智能和可持续交通领域的全球领导者阿尔斯通赢得了一份价值 1.44 亿欧元(约合 1285 亿印度卢比)的合同,为 17 辆 Vande Bharat 卧铺列车(408 辆车)提供 Mitrac 牵引部件和其他电气设备。这些系统将供应给位于钦奈的印度铁路综合客车厂 (ICF)。该合同还包括在保修期结束后的五年内,在各个铁路站场对牵引和主要电气设备进行预防性和纠正性维护以及支持服务。这些设备将安装在 Vande Bharat 平台的 24 辆车卧铺列车上,设计最高时速为 180 公里/小时,服务速度为 160 公里/小时。鉴于此次合同的中标,阿尔斯通印度公司董事总经理 Olivier Loison 表示:“Vande Bharat 列车代表了印度轨道交通的现代面貌,我们很自豪能够再次与印度铁路公司合作,进一步实现他们的愿景。阿尔斯通拥有铁路行业最广泛的零部件组合,这些产品组合是数十年来在全球范围内提供铁路解决方案的经验的结晶。我们在印度拥有强大的制造和工程实力,这将使我们能够提供世界一流的产品并优化维护。”
酿酒是古老的技术之一,只是通过复杂的生化反应将糖转化为酒精的过程。酿酒的过程涉及一系列的融合技术,该技术在酿酒厂面临许多挑战,包括由于化学和微生物学不稳定性而导致的质量不一致,有限的感官伏特(Avor avor),并且担心微观环境条件的变化。发酵是一种代谢过程,其中有机底物的化学组成在厌氧条件下通过细胞酶破碎。混合发酵涉及使用多种菌株,可以增强发酵食品的香气,克服单菌株发酵的局限性,并改善食物的植物和食物质量。混合发酵在农业食品行业,医疗保健产品和医学科学方面具有重要应用。现代的混合发酵过程显示了葡萄酒香气,豆avor和味道的增强,可通过多种微生物的协同效应来降低挥发性酸度并上调乙酸苯基乙酸苯基乙酸苯基苯基浓度。在酒精发酵中的关键微生物(例如酵母,乳酸和乙酸细菌)在酒精发酵过程中相互相互作用会影响葡萄酒的质量和鸟。极性微生物已经建立了不同的分子策略,可以在不利条件下生存。被称为极端同酶,具有盐含量,热稳定性和冷适应能力的特性。但是,酒精的理化和感觉特性对于最终用品的质量很重要。因此,当优化发酵条件时,选择微生物的正确组合是获得更好的物理化学和感觉特性的关键。的使用使用混合发酵和极端化合物可以提供显着的见解和潜在的补救解决方案来克服这些技术问题并以更可取和可持续的方式来塑造最终产品,从而挑战当前的缺点,以使更具弹性的最终产品具有一致,富有效果的产品,并且可以使许多可能的产品能够受到任何可能的影响。
摘要:某些次级类胡萝卜素,如虾青素和角黄素,在人类营养、食品、健康和化妆品以及饲料和水产养殖领域具有越来越大的经济价值,特别是因为它们具有多种生物活性,例如其显著的抗氧化特性。本研究致力于评估在光生物反应器中培养从留尼汪岛生物多样性中新分离的 Dysmorphococcus 菌株以生产这些有价值的叶黄素的可行性。结果表明,所有这些菌株都能够在环境压力下产生和积累角黄素和虾青素。其中,一株与其他 Dysmorphococcus 菌株相比,其形态、遗传和生化特性非常有趣,在 3 L 台式光生物反应器中进一步培养,发现其产生的富含类胡萝卜素的生物质浓度最高,产量分别约为 4 g L − 1 dw 和 0.055 g L − 1 d − 1 dw。我们还发现,生物质中含有高达 1.2 mg g − 1 dw 的角黄素和 0.7 mg g − 1 dw 的不同形式的虾青素,主要是虾青素单酯。我们发现这些类胡萝卜素的生产率低于之前报道的其他微藻物种的生产率,我们建议需要进一步优化培养和胡萝卜素生成诱导过程,以提高生产率,并使这种局部分离的 Dysmorphococcus 菌株可用于未来商业化生产天然角黄素和虾青素。
这项研究通过生态学方法来解决龋齿,强调使用天然成分保持平衡的口服微生物组并产生稳定的免疫口腔。关于微生物群落,饮食习惯和口腔卫生实践之间的相互作用,该研究突出了南瓜种子提取物的潜在益处,包括其抗炎性,抗菌和抗氧化特性。与传统的化学干预措施不同,这种方法促进了可持续和自然的口腔健康。这项研究使用了南瓜种子提取物和两种类型的细菌形式的天然成分,即Sanguinis ATCC链球菌ATCC 10556和嗜酸乳杆菌ATCC 4356,它们包括在强生生物膜生产国类别中。该研究使用的工具是一个微板读取器,波长为490 nm,用于在两种细菌中读取生物膜。这项研究的结果是,在45%南瓜种子提取物的浓度下,具有抗脂肪膜活性可抑制sanguinis at canguinis atcc 10556的生长(MBIC),价值为52.42%,其浓度为45%的45%南瓜种子提取物的浓度为60.6.60.6. 60.60.60.10.10.60.6 (MBEC)为51.45%。对于所有生物膜测量组,方差分析测试的结果均显着。这项研究得出的结论是,南瓜种子具有良好的抗生素活性,用于sanguinis stanguinis atcc 10566和嗜酸乳杆菌ATCC 4356。得出的结论是,南瓜种子含有L-精氨酸化合物,可以触发口腔环境中的变化到更稳态的pH。
胼胝体发育不全 (CCA) 是最常见的先天性畸形之一,其神经发育结果不确定,尤其是当疾病被孤立时。为了向父母提供明智的咨询,在怀孕早期确定与预测结果相关的解剖标记至关重要。使用 CCA 对胎儿大脑进行定量探索的情况很少见,而且主要限于对特定大脑结构的研究。在这里,我们提出了一种基于微分同胚变换的胎儿大脑磁共振成像 (MRI) 分析流程。它包括两个步骤:半自动胎儿 MRI 预处理程序和量化与正常发育的解剖偏差的流程。MRI 预处理之后,使用配准将每个体积胎儿大脑与年龄匹配的健康模板大脑在全球范围内进行比较。将变形并行传输到同一空间以纠正胎儿之间的年龄差异。使用主成分分析和分类确定了 CCA 特有的变形模式。该流程在回顾性选择的 38 个健康胎儿和 73 个 CCA 胎儿的 MRI 上进行了测试。根据更多局部分析,最相关的 14 分类变形模式将众所周知的大脑改变与 CCA 相结合。15 这项初步工作有望定量探索异常胎儿大脑 16 并将在未来用于识别与不良临床结果相关的解剖特征 17。18
1 柏林夏里特医学院(柏林自由大学、柏林洪堡大学和柏林卫生研究所的企业成员),精神病学和心理治疗系,伯恩斯坦计算神经科学中心,德国柏林;2 柏林工业大学 IV 学院 - 电气工程和计算机科学,德国柏林;3 柏林自由大学教育与心理学系,德国柏林;4 智力科学,卓越研究集群,德国柏林;5 社会与预防医学,体育与健康科学系,院内单位“认知科学”,人文科学学院,勃兰登堡健康科学学院,服务研究和电子健康研究领域,波茨坦大学,德国波茨坦; 6 德国曼海姆海德堡大学医学院中央精神卫生研究所儿童和青少年精神病学和心理治疗系;7 爱尔兰都柏林都柏林圣三一学院医学院和圣三一学院神经科学研究所精神病学学科;8 英国伦敦国王学院精神病学研究所、心理学神经科学 SGDP 中心人口神经科学和精准医学中心 (PONS);9 德国海德堡大学医学院中央精神卫生研究所认知和临床神经科学研究所;10 德国曼海姆曼海姆大学社会科学学院心理学系;11 法国巴黎巴黎萨克雷大学 CEA NeuroSpin;12 美国伯灵顿佛蒙特大学精神病学和心理学系; 13 诺丁汉大学彼得·曼斯菲尔德爵士成像中心物理与天文学学院,英国诺丁汉; 14 联邦物理技术研究所,柏林,德国; 15 国家健康与医学研究所、INSERM U A10 “Trajectoires développementales en psychiatrie”巴黎-萨克莱大学、巴黎-萨克莱高等师范学院、法国国家科学研究中心、法国伊维特河畔吉夫博雷利中心; 16 AP-HP 索邦大学,儿童和青少年精神病学系,Pitié-Salpêtrière 医院,法国巴黎; 17 法国埃唐普 EPS Barthélémy Durand 精神病学系; 18 德国柏林洪堡大学 Charite Mitte 校区精神病学和心理治疗系 PONS 研究小组; 19 疾病神经退行性疾病研究所,UMR 5293,CNRS,CEA,波尔多大学,波尔多,法国; 20 蒙特利尔大学医学院和圣贾斯汀大学中心医院精神病学系,蒙特利尔,