约翰霍普金斯大学成立于 1876 年,作为第一所实施研究生培训和研究的大学,它借鉴了英国和欧洲大陆大学的模式,彻底改变了美国的高等教育。约翰霍普金斯大学的成立原则是:通过追求伟大的想法和分享我们所学到的知识,我们可以让世界变得更美好。140 多年来,我们始终没有偏离这一愿景。我们的研究人员和学生并肩工作,追求改善生活的发现。什么样的发现?我们使水净化成为可能,开创了基因工程领域,利用新视野号太空探测器完成了对冥王星的飞越,发明了第一个可植入和可充电的心脏起搏器,并验证了死海古卷的真实性。我们发明了糖精、心肺复苏术和超音速冲压喷气发动机。我们的努力促成了儿童安全约束法的出台、乘晕宁可以预防和治疗各种运动疾病的发现、橡胶手术手套的使用,以及用于矫正婴儿心脏缺陷的革命性外科手术程序的开发。
“间歇脉冲”喷气发动机(图1-8),称为气脉冲或脉冲喷气发动机,通过牺牲连续发电原理来提高压缩率。脉冲喷气发动机类似于冲压喷气发动机,但带有一系列止回阀。位于止回阀正后方的燃油喷射喷嘴提供燃料。当发动机在空中行驶时,机头上的压力会打开阀门,将空气冲入管道,使空气与燃料混合。点燃可燃混合物会产生高压(来自膨胀的气体),从而关闭阀门。气体的剧烈喷出在管道内形成相对低压的区域,通过扁平弹簧阀吸入新鲜空气。由于管道的温度和部分燃烧废气的回流,其余的电荷无需点火塞即可燃烧。这种操作循环或脉动会产生很大的嗡嗡声。“嗡嗡炸弹”描述了这种装置的早期应用,即德国 V-1 飞行炸弹。我们学习了火箭喷气推进的基本原理。冲压喷气机告诉我们,增加热量会使气体膨胀并增加速度。它还表明,可能增加的热量取决于
“间歇脉冲”喷气发动机(图1-8),称为气脉冲或脉冲喷气发动机,通过牺牲连续发电原理来提高压缩率。脉冲喷气发动机类似于冲压喷气发动机,但带有一系列止回阀。位于止回阀正后方的燃油喷射喷嘴提供燃料。当发动机在空中行驶时,机头上的压力会打开阀门,将空气冲入管道,使空气与燃料混合。点燃可燃混合物会产生高压(来自膨胀的气体),从而关闭阀门。气体的剧烈喷出在管道内形成相对低压的区域,通过扁平弹簧阀吸入新鲜空气。由于管道的温度和部分燃烧废气的回流,其余的电荷无需点火塞即可燃烧。这种操作循环或脉动会产生很大的嗡嗡声。“嗡嗡炸弹”描述了这种装置的早期应用,即德国 V-1 飞行炸弹。我们学习了火箭喷气推进的基本原理。冲压喷气机告诉我们,增加热量会使气体膨胀并增加速度。它还表明,可能增加的热量取决于
第 26 届 AIAA 国际太空飞机和高超音速系统和技术会议将于 2025 年与 AIAA 科学技术 (SciTech) 论坛和博览会同期举行,将为来自世界各地的与会者提供一个讨论和交流信息的论坛,讨论与太空飞机和高超音速大气飞行器相关的前沿研究和开发活动以及这些能力的基础技术。会议将介绍来自北美、南美、澳大利亚、欧洲和亚洲的国家计划,并讨论多种国际合作机会。技术论文主题包括计划中和正在进行的航天飞机和高超音速飞行器计划、先进运载火箭和高超音速大气飞行器概念、商业太空旅游概念、地面和飞行测试技术、结果和经验教训、再入飞行器系统和技术、航天飞机和高超音速飞行器的空气动力学和气动热力学、制导和控制系统、火箭、冲压发动机、超音速冲压发动机和其他先进推进系统,包括组件技术(例如进气口、燃烧系统、燃油喷射概念、点火和火焰稳定概念、喷嘴)、高温材料、热结构和热保护系统、健康监测和管理技术等。将围绕全球关注的相关主题组织特别小组会议。
该课程通过应用物理学,动手活动和现实世界的例子介绍了航空和宇航员的基础。学生将面临航空和宇航员的历史和挑战。简介:航空航天的历史,气氛,航空航天车的分类,飞机和航天器的基本组件,车辆控制面和系统,航空航天部门简介,主要航空航天行业和制造商。飞行原则:声音速度,标准气氛的重要性,伯诺利的原理,作用于飞机和航天器上的空气动力学力,空置命名法,压力和速度分布,空气动力,升力和拖拉,升力和拖曳,超音速,超音速效应,超音速效应,空气动力学中心,纵横比比,压力,压力中心,坟墓中心。航空航天推进:推进系统,推进系统的分类,位置和操作原理。飞机和航天器的基本原理,布雷顿周期和汉弗莱循环,喷气发动机,螺旋桨发动机,火箭发动机,ramjet和Scramjet。航天器机械,结构和热设计:航空航天结构,航空航天材料的基本原理,对结构故障模式的理解,航空航天结构中的外部和内部负载,机械组件的强度,重点是故障和疲劳设计,热温度和冷气温和寒冷的热量,从可移动的遮盖物和遮阳板上的热循环。启动车辆和卫星工程:启动车辆动力学,基本轨道力学,卫星工程历史,卫星应用和轨道,GMAT软件,卫星子系统,清除太空碎片,拆卸太空碎片,任务设计理念,太空环境,闭环问题解决方案解决方案解决管理,环境测试,环境测试。太空机器人:无人自主系统的感知火星和月球探索;控制无人自主系统火星和月球探索;航空工程的未来挑战;无人自主系统(UAS)火星和月球探索简介。
未来海军能力(FNC) I. 引言 本公告介绍了动能武器推进和机身技术方面的先进能力整合研究与开发。该项目名为“先进能力海上效应器 (ACME) 未来海军能力 (FNC)”,编号为 N0001425SB001,是海军和海军陆战队科学技术长期广泛机构公告 (BAA),可在 https://www.onr.navy.mil/work-with-us/funding-opportunities/announcements 找到。提案的提交、评估和研究合同的签订将按照上述长期广泛机构公告中所述进行。本公告旨在引起科学界对 (1) 研究领域和 (2) 提交白皮书和完整提案的计划时间表的关注。II.主题描述 提议的主题将使最先进的 (SOTA) 机身和推进技术成熟,形成原型演示概念。该计划将研究与动能武器系统相关的技术,用于下一代低成本、高数量和远程空射 STRIKE 武器概念。ONR 正在寻求解决的科学和技术 (S&T) 问题是持续成熟和整合多项技术,包括:机身材料(石墨/芳纶复合材料/金属增材制造)、固体推进剂火箭(高负载药柱)和超音速推进系统(冲压喷气发动机)和紧凑高效弹头。目标是使这些技术充分成熟,并将它们集成到可行的原型武器系统中,以满足此 BAA 呼叫中概述的目标。
类别0核材料,设施和设备 - 核反应堆,燃气离心机,高强度金属,设备和材料,尤其是为核用途而设计的。类别1材料,化学物质,微生物和毒素 - 保护和检测设备,防弹衣,前体化学物质,毒素,壳体,泵,泵物体,叶轮和转子,病毒,细菌,保护性和检测设备,辐射设备,辐射屏蔽窗口和金属粉末生产设备。类别2材料处理 - 用于铣削的机床,计算机数值控制的机器和组件;反应容器或反应堆,搅拌器,储罐,容器,蒸馏或吸收柱,阀门,多壁管,多封或无密封的泵,十字架,机器人,机器人,振动测试系统,真空泵,化学处理,化学处理和处理设备。类别3电子 - 微波组件,声波设备,高能设备,开关设备,雷管,某些集成电路,光谱仪电子雷管,集成电路,微波电源模块和质谱仪。类别4计算机 - 高性能计算机,相关的电子组件以及其他专门设计的组件,辐射硬化计算机,神经和光学计算机以及相关设备。类别5电信和信息安全性 - 第1部分 - 电信。电信系统,光纤电缆,无线电设备,干扰设备以及遥测设备和遥控设备。第2部分 - 信息安全性(密码学)。加密设备和通信电缆系统。类别6传感器和激光器 - 海洋声学系统,言语,高速摄像头,光学镜和激光器,成像摄像机和磁力计。类别7导航和航空电子学 - 陀螺仪,加速度计,惯性导航系统,飞行控制系统,用于海洋学和水文测量的设备,加密的全球定位系统。第8类海军陆战队 - 潜水车,水下视觉系统,摄影静止相机,远程控制的操纵器,降噪系统和空气独立的电力系统。类别9航空航天和推进 - 航空和海洋燃气轮机发动机,液体火箭推进系统,无人驾驶飞机,混合火箭电动机,导弹,重新进入车辆,无人机,火箭电机,Ramjet Engines,Spacecraft,Spacecraft,Sounding Rockets,声学振动测试设备。
1.简介 飞机是一种通过从空中获得推力而飞行的飞行器。它通过机翼的静态升力或动态升力,或者有时是飞机发动机的向下推力来抵消重力。围绕飞机的人体运动称为飞行。民用飞机由飞行员驾驶,但无人驾驶飞机可以由计算机间接控制或自主控制。飞机可以根据升力类型、飞机推力、用途等不同标准进行分类。较重的飞机(例如飞机)必须设法处理向下推的空气或气体,以便发生反应(根据牛顿运动定律)将飞机向上推。这种在空中的动态运动是“气动”一词的来源。有两种方法可以控制产生的快速上升力,即流线型升力和发动机推力。飞机的设计考虑了许多因素,例如客户和制造商的要求、安全协议、物理和财务要求。对于某些飞机型号,设计过程由国家适航机构控制。飞机的主要部件通常分为三类: 1.结构包括主要承重部件和耦合设备。2.动力系统包括动力源和相关设备。3.飞行包括控制、导航和通信系统,通常是电气性质的。1.1 飞机结构 飞机由五个主要辅助部分组成,即:1.机身:机身是机身的基本结构,其他所有部分都连接在其上。机身包括驾驶舱或飞行甲板、旅客舱和货舱。2.机翼:机翼是飞机最基本的升力输送部件。机翼的布置根据飞机类型及其刺激而变化。大多数飞机的设计使得机翼的外端比机翼与机身连接的地方高。3.尾翼(尾部结构):尾翼或尾部提供飞机的安全性和控制力。4.动力装置(推进系统):飞机动力装置分为五种类型。5.纵梁与壳体或肋骨可靠地关联。涡轮螺旋桨发动机用于较低速度,冲压喷气发动机用于高速飞机,涡扇发动机用于0.3马赫至2马赫,涡轮喷气发动机用于高速飞机,以及基本低速飞机的发动机。起落架:飞机的起落架将飞机支撑在地面上,平稳飞行,保持飞行和着陆的平稳。 1.2 纵梁和接头 在飞机机身中,纵梁连接到成型器(也称为机匣)并沿着飞机的纵向方向运行。它们主要负责将蒙皮上的流线型重量传递到边框和成型器中。在机翼或稳定器中,纵梁横向运行并连接在肋骨之间。这里的主要功能还包括将机翼上的扭转力转移到肋骨上并进行战斗。有时会使用“纵梁”和“纵梁”这两个词。纵梁通常比纵梁承受更大的重量,并且将蒙皮重量转移到内部结构上。纵梁通常是