我是Md.tawabur Rahman,目前在孟加拉国库尔纳(Khulna-9203)的库尔纳工程与技术大学(Kuet)库尔纳工程与技术大学(Kuet)的电气和电子工程系(EEE)担任教授。我从美国南达科他州立大学获得电气工程博士学位。我还从Kuet收到了电气和电子工程的BS和MS。我的研究集中于人类健康,环境和农业应用的电化学/化学/生物/光学传感器。除了传感器之外,我还在研究微加工和特征,2D材料(石墨烯,TMDC等。),钙钛矿太阳能电池,MOSFET和纳米技术。我的研究已在同行评审期刊中发表,包括高级功能材料,传感器和执行器B:化学,IEEE传感器期刊,ACS应用材料和接口,ACS应用能量材料,ACS应用的Nano材料等。
Fanny Leenhardt,Matthieu Gracia,Catherine Perrin,Claudia Muracciole-Bich,BénédicteMarion等。液相色谱 - 潮流质谱测定法,用于在药物相互作用的临床背景下人类血浆中CDK4/6抑制剂定量。药物和生物医学分析杂志,2020,188,pp.113438。10.1016/j.jpba.2020.113438。HAL-03003807V2
Saptarshee Mitra,Raphael Paris,Laurent Bernard,RémiAbbal,Pascal Charrier等。应用于海啸沉积物的X射线图:优化的图像处理和粒度,粒度,粒度形状和沉积物的定量分析3D。海洋地质学,2024,470,pp.107247。10.1016/j.margeo.2024.107247。hal-04514532
图3。ERP分析及其结果的概述。 A. 在受试者S3中表现出由听觉刺激(红点)或按钮按(绿点)引起的诱发电势的位置。 B. 在听觉刺激(左)和位置A1和M1的纽扣刺激期间ECOG活动的时间课程及其跨审判平均值。 位置A1处的单次试验ECOG响应在刺激发作处进行相锁定,并表现出与跨审判平均值相同的N1,P1和P2分量。 相比之下,位置M1处的单次试验ECOG响应在运动开始时没有相锁,因此在所有试验中,平均没有诱发的电位。 相反,在所有试验中的平均水平造成了缓慢的皮质潜力。 C。位于A1-3和M1-2的平均AEP(左侧的红色痕迹)和MRP(右侧的绿色痕迹)及其在受试者S3中的平均值。 所有听觉位置均表现出清晰的N1,P1和P2组件,并且所有运动位置均具有突出的慢速皮质潜力。 D.来自受试者S3位置A1和M1的ERP的时间课程,在两个不同的频带(<3 Hz和3-40 Hz)中。 AEP的特征成分由3-40 Hz频段捕获。 相反,只有在<3 Hz频段中才能看到MRP中的缓慢负电位。 E.基线(-400至0 ms)和ERP(分别为0至400毫秒)周期(分别为顶部和底部)的<3 Hz和3–40 Hz频段(分别为top和底部)的3–40 Hz频段,在所有与任务相关的位置和所有受试者中都计算出来。 基线活性主要由3-40 Hz带功率组成(P <0.001,配对t检验)。ERP分析及其结果的概述。A.在受试者S3中表现出由听觉刺激(红点)或按钮按(绿点)引起的诱发电势的位置。B.在听觉刺激(左)和位置A1和M1的纽扣刺激期间ECOG活动的时间课程及其跨审判平均值。位置A1处的单次试验ECOG响应在刺激发作处进行相锁定,并表现出与跨审判平均值相同的N1,P1和P2分量。相比之下,位置M1处的单次试验ECOG响应在运动开始时没有相锁,因此在所有试验中,平均没有诱发的电位。相反,在所有试验中的平均水平造成了缓慢的皮质潜力。C。位于A1-3和M1-2的平均AEP(左侧的红色痕迹)和MRP(右侧的绿色痕迹)及其在受试者S3中的平均值。所有听觉位置均表现出清晰的N1,P1和P2组件,并且所有运动位置均具有突出的慢速皮质潜力。D.来自受试者S3位置A1和M1的ERP的时间课程,在两个不同的频带(<3 Hz和3-40 Hz)中。AEP的特征成分由3-40 Hz频段捕获。相反,只有在<3 Hz频段中才能看到MRP中的缓慢负电位。E.基线(-400至0 ms)和ERP(分别为0至400毫秒)周期(分别为顶部和底部)的<3 Hz和3–40 Hz频段(分别为top和底部)的3–40 Hz频段,在所有与任务相关的位置和所有受试者中都计算出来。基线活性主要由3-40 Hz带功率组成(P <0.001,配对t检验)。AEP的P1和N1组件由3-40 Hz带功率(P <0.001,配对t检验)组成,而MRP的主要由<3 Hz频带功率组成(P <0.001,配对t检验)。F.功率(顶部)和3-40 Hz频段中的AEP(底部)的形状,用于试验最高(实心)且最低(虚线)的第10个百分位数的固定力(计算每个任务相关位置,平均所有位置和受试者的平均)。较高的刺激性功率会导致AEP中较高的N1振幅(p <0.05,t检验,fdr校正了n = 22)。G.功率(顶部)和MRP的形状(底部)。前刺激功率不会显着影响MRP的形状(p <0.05,t检验,fdr校正了n = 15)。
2025年1月22日4 1.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.1.1工作人员。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.1.2课程哲学和后勤。。。。。。。。。。。。。。。。。。。。。。。。4 1.2什么是密码学?。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 1.3安全通信。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 1.3.1消息保密。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 1.3.2消息无情。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>91。1.3.3信号和汽车。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 1.4零知识证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 1.5完全同态加密。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 1.6安全多方计算。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 1.7进一步的主题。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 1.8 Q&A。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 div>
将在整个放射线照相计划中为学生提供适当的辐射保护程序的建议和培训。建议学生在成像过程中不要容纳患者或图像受体。非放射工人。学生必须在成像程序中保护患者和自己。接触到实时X射线梁时,始终使用适当的屏蔽。学生在预定的临床轮换过程中必须佩戴适当的辐射徽章。学生在曝光期间在实验室中在实验室中的能量实验室中进行曝光时,还必须佩戴辐射监测徽章。在学院的充满活力的实验室中,学生永远不会接触到直接的X射线梁。仅在大学实验室的直接监督下,只能在注册射线照相的教练的直接监督下进行暴露。学生在大学实验室进行任何现场直播时,必须始终戴上辐射检测徽章。
摘要。我们介绍了Sqisignhd,这是一种灵感来自SQISIGN的新的Quantum Digital Signature Sneps。sqisignhd利用了对SIDH攻击的最新态度突破,这允许有效地表示任意程度的同基因作为较高尺寸同等基因的组成部分。sqisignhd克服了sqisign的主要缺点。首先,它可以很好地扩展到高安全级别,因为Sqisignhd的公共参数很容易生成:基础字段的特征仅是表2 f 3 f'-1。第二,签名过程更简单,更有效。我们在28毫秒内采用C运行中实施的签名程序,与Sqisign相比,这是一个显着改善。第三,该方案更容易分析,从而降低了更具吸引力的安全性。最后,签名大小比(已经有纪录的)SQISIGN更紧凑,签名的签名小至109个字节,对于后Quantum NIST-1的安全性水平。这些优点可能是以验证为代价的,验证现在需要在维度4中计算一个同等基因,该任务的优化成本仍然不确定,因为这是很少关注的重点。我们对验证的实验性SAGEMATH实施在600毫秒左右运行,表明优化和低级实施后,维度4 iSEGEN的潜在Craplaphic ofgraphic兴趣。
我们提出了一个半监督的域适应框架,用于来自不同图像模式的脑血管序列。现有的最新方法集中在单一模态上,尽管可用的脑血管成像技术广泛。这可能导致重大分布变化,从而对跨模式的概括产生负面影响。By relying on annotated angiographies and a limited number of an- notated venographies, our framework accomplishes image-to-image translation and se- mantic segmentation, leveraging a disentangled and semantically rich latent space to represent heterogeneous data and perform image-level adaptation from source to tar- get domains.此外,我们降低了基于周期的架构的典型复杂性,并最大程度地减少了对抗性训练的使用,这使我们能够通过稳定的培训构建一个高效且直观的模型。我们评估了有关磁共振血管造影和静脉曲张的方法。在源域中实现最先进的性能时,我们的方法在目标域中达到了仅8个目标域的骰子得分系数。降低了9%,突出了其在不同模态上稳健脑血管图像分割的有希望的潜力。
X射线Ptychography的未来(一种连贯的衍射成像方法)有望实现的分辨率和实验效率,同时探测了越来越复杂的样品的特征。这是通过复杂的成像方法启用的,结合了高度优化的硬件,软件和过程。在本文中,解决了X射线ptychography实验的几个方面,强调了通过使用多个光束实现的增强的多功能性和有效性。从对纳米化的全面理解开始,讨论了聚焦X射线光学的生产。具体而言,开发了直接作品的岩性过程,并描述了其细节,特别强调了在50 kV加速度电压下在化学上半弹性抗性的情况下进行电子束光刻。此过程既多功能又精确,最终促进了菲涅尔区板(FZP)的制造。因此,论文报告了几个并联的几个FZP的应用,用于生成多个X射线梁以执行Ptychography。特别是研究了对标准Ptychographic方法的新型扩展。对多光束X射线PTYChography的研究始于紧密间隔的FZP,以线性阵列排列在同一芯片上,模拟和推进了先前关于该主题的研究,并证明了自制硬件的准备就绪,以实现更复杂的实现。最值得注意的是,FZP彼此之间的接近48 µm,并且最多可以使用三个梁,从而将视场(FOV)扩展了三倍。接下来,引入了一种新颖的设置,在多光束X射线ptychography的背景下促进了适应性的概念,这要归功于堆叠和机动的FZP。在测量之间将焦点光学元件移动的可能性赋予上述设置前所未有的多功能性。对于实验,样本更改或检测条件的每个新迭代,光学元件不必重新设计。足以使用各自的电机并将设置适应新的测量值。金纳米晶簇用各种梁的间距成像,从而在样品上同样间隔区域进行成像,并将FOV扩展到两个倍。这种设置的成功导致其在更复杂的测量中实现,最终导致表现出同时的多光束和多块Ptychography,这两个从未被放在一起。两层样品,与单光束Ptychographichographic测量值相比,层到层的分离范围从1400 µm降至100 µm,分辨率没有损害。最后,FZP的聚焦作用与策划
- Enable-plugin- enable-shared -enable-threads = posix -host = x86_64-linux-gnu -program-pragram-prefix = x86_64-linux-gnu--target = x86_64-linux-linux-gnu-with-with-babi = m64-babi = m64-with-with-with-with-with-abr-ar --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Notes: Scaling Governor: acpi-cpufreq schedutil - CPU Microcode: 0x10000db Security Notes: gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed:不影响 + spec_rstack_overflow:不影响 + spec_store_bypass:不影响 + spectre_v1:脆弱:__user Pointer Pointer SaniTization和UserCopy屏障;没有SWAPGS屏障 + Spectre_v2:脆弱; Stibp:禁用; PBRSB-Eibrs:未受到影响; BHI:不影响 + SRBD:不影响 + TSX_ASYNC_ABORT:不影响