优先事项,使他们实际上负责(东方,指南)“部门”/“研究所” - 研究议程并确定了年度目标。“优先”基本上跟踪了部门内的教师研究专业。,但显然,并非所有这些“优先事项”都可以与经常性预算有关。在即将进行的经常性预算方面,对主要学校层面的战略研究优先事项尤其重要,这将需要更明确地选择相对于托管董事会对单位预算的批准,从而分配资源(人员,设备,材料,供应等)各个部门和研究机构/中心。成功实施这些计划将取决于对学校,部门,学院和中心的循环预算的高度批准,这些预算很快将被制定和提交批准,从2024-2025财年的经常性预算(7月至6月)开始。
由Elsevier出版。这是作者接受的手稿:创意共享归因许可证(CC:BY 4.0)。最终发布的版本(记录的版本)可在线访问:10.1016/j.compag.2024.109412。请参考任何适用的发布者使用条款。
n eupraxia的高级加速器高质量束激光注射器(LPI)[1] IJCLAB [2]:10 Hz 200Mev LPI测试设施的准备技术设计阶段和未来的高梯度加速器R&D R&D
● Head Office: Canada, founded in 2006 ● Branch Offices: CBS Japan (2006) & CBS Europe (2020) ● Additionally: We provide specialized tools for opto-mechanical simulation (FRED) and optical measurement systems (opsira) to support the full optical development cycle ● Today's Presenter: Tom Davies, COO
Hall A演讲厅A主席Hall B扬声器B主席B会议厅9--10 AM Andrea Bartolomeis教授(意大利)(9-9.15)AntipsyChotics的非规范作用机理:精神病和重新培训的相关性。Mona Rakhawy教授(9.15-9.30)理解躯体化教授Yomna Sabri教授(9.30-9.45)夜间遗传及其精神科方面的状态;埃及问答(9.45-10)的视图
文本到图像生成模型正变得越来越流行,公众可以访问。由于这些模型看到大规模的部署,因此有必要深入研究其安全性和公平性,以免消散和永久存在任何形式的偏见。然而,存在的工作重点是检测封闭的偏见集,定义了先验的偏见,将研究限制为众所周知的概念。在本文中,我们解决了出现OpenBias的文本到图像生成模型中开放式偏见检测的挑战,该模型是一条新管道,该管道可识别和量化双质量的严重性,而无需访问任何预编译的集合。OpenBias有三个阶段。在第一阶段,我们利用大型语言模型(LLM)提出偏见,给定一组字幕。其次,目标生成模型使用相同的字幕绘制图像。最后,一个视觉问题回答模型认识到了先前提出的偏见的存在和范围。我们研究了稳定扩散1.5、2和XL强调新偏见的稳定扩散,从未研究过。通过定量实验,我们证明了OpenBias与当前的封闭式偏见检测方法和人类判断一致。
浓度不平等作为许多独立随机变量功能的尾巴概率上的上限。在组合优化问题上说明了浓度不平等的范围。详细描述了伯恩斯坦不等式的路径,强调了一个事实,即随机变量的对数宽带变换上的良好界限为尾巴概率提供了指数界限。本课程的主要主题将是伯恩斯坦式不平等的推导,用于一般功能。martingales方法提供了构建伯恩斯坦样不平等的一般配方。与Martingales相关的指数性超级马丁甲公司以有限的增量相关联,可以重新确定著名的有限差异不平等。尽管并且由于其普遍性,但使用Martingale方法可能很难。这促使搜索更具用户友好的方法,例如(例如)熵方法。Efron-Stein不等式说明了熵方法中的第一步。后者的不等式在独立随机变量的一般函数的方差上提供了一般且通常很紧的上限。在组合优化问题上首先说明了Efron-Stein结合。
摘要。我们提出了戴维斯(Davis),这是一个基于i fifusion的udiovi sual separa the the trapion框架,该框架通过生成学习解决了视听声音源分离任务。现有方法通常将声音隔离作为基于面具的回归问题,从而取得了重大进展。但是,他们在捕获高质量分离声音与各种表情所需的复杂数据分布时面临局限性。相比之下,戴维斯利用生成扩散模型和分离U-net直接从高斯噪声中综合了分离的声音,并在音频混合物和视觉信息上进行条件。具有其生成性目标,戴维斯更适合实现各种声音猫的高质量分离的目标。我们将戴维斯与AVE和音乐数据集上现有的最新歧视性音频分离方法进行了比较,结果表明,戴维斯在分离质量方面胜过其他方法,这证明了我们可以解决视听源分离任务的框架的优势。我们的项目页面可在此处提供:https://wikichao.github.io/data/projects/davis/。
在过去的十年中,在数字化梵语文本和推进语言的计算分析方面取得了重大进展。然而,为促进NLP的努力促进了诸如语义类比预测,命名实体识别和其他人的复杂语义下游任务,而其他人仍然有限。此差距主要是由于缺乏建立在大规模梵文文本数据上的坚固,预先训练的梵文模型,因为这需要大量的计算资源和数据准备。在本文中,我们介绍了Sansgpt,这是一种生成的预培训模型,已在大量的梵文文本上进行了培训,旨在促进下游NLP任务的微调和开发。我们的目标是该模型是推进梵语NLP研究的催化剂。此外,我们开发了一种专门针对梵语文本优化的自定义令牌,从而实现了复合词的有效令牌化,并使其更适合生成任务。我们的数据收集和清洁过程涵盖了各种各样的可用梵文文献,以确保培训的全面代表。我们通过对语义类比预测和明喻元素提取进行微调来进一步证明该模型的疗效,分别达到了大约95.8%和92.8%的令人印象深刻的精度。
