● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
结构变异(SV)是重大的基因组改变,在包括癌症在内的遗传多样性,进化和各种疾病中起着至关重要的作用。检测SVS的传统方法通常在计算效率,准确性和可扩展性方面面临挑战,尤其是在处理大型基因组数据时。近年来,图形处理单元(GPU)和机器学习(ML)的出现已经开发了解决这些挑战的新途径。本文探讨了GPU加速度和ML技术的整合,以增强结构变体的检测和分析。我们提出了一个全面的框架,该框架利用深度学习模型(用于在GPU上并行处理)以高精度实现实时SV检测。我们的方法不仅减轻了计算负担,而且还提高了与常规方法相比,SV检测的敏感性和特异性。通过在各种基因组数据集上进行广泛的基准测试,我们在速度,准确性和可扩展性方面证明了我们的GPU加速ML框架的出色性能。这些发现强调了将GPU和ML技术相结合以革新基因组研究的潜力,并为在临床和研究环境中更有效,更精确的结构变体分析铺平道路。
Hall A演讲厅A主席Hall B扬声器B主席B会议厅9--10 AM Andrea Bartolomeis教授(意大利)(9-9.15)AntipsyChotics的非规范作用机理:精神病和重新培训的相关性。Mona Rakhawy教授(9.15-9.30)理解躯体化教授Yomna Sabri教授(9.30-9.45)夜间遗传及其精神科方面的状态;埃及问答(9.45-10)的视图
这家石油巨头表达的气候关注点是由达沃斯的精英宣布的。另一个事件,例如警察,精英以私人喷气机到达。单个私人飞机在一小时内的普通人在一年中的一小时内发射多达二氧化碳。全球精英尽管是人口的一小部分,但对航空部门的总体排放造成了不成比例的贡献。豪华的生活方式和消费方式表明,他们公然无视环境和社会影响。,但其中许多人现在流利了气候。精英关于气候变化的节奏呼应了OlúfMio.Táíwò的见解,这些著作是关于精英捕获的最新书籍。这些精通和资源丰富的精英正在劫持政治项目,并通过确定知识和价值的注意力来扭曲气候变化话语。
随着人工智能产品的普及,人类和人工智能越来越多地合作做出决策。为了使这种类型的合作取得成功,人类需要了解人工智能的能力,以便有效地校准他们的信任。在这些合作关系中,以人类可以理解的方式解释决策和预测至关重要,以鼓励信任校准。可解释人工智能领域专注于将可解释性融入人工智能,但旨在使人工智能模型更具可解释性。因此,这项研究通常从以模型为中心的角度而不是以人为中心的角度来处理解释。与此同时,行业研究人员已经制定了指导方针,以帮助界面设计师有效地生成用户友好的解释。然而,这些指导方针通常过于宽泛,无法有效指导行业设计师的日常工作。我们的研究通过两种方法解决了这一差距:一个实证实验,研究人们如何回应解释以及哪些类型的解释对信任校准最有帮助;以及一个教育资源,帮助行业设计师了解用户可能有什么问题,以及使用环境如何影响他们可能使用的解释。我们的实验结果表明,解释并不总是有助于信任校准,实际上可能会损害信任校准,尤其是面对自我能力较低的新手用户时。我们对行业设计师进行的探索性访谈和可用性测试表明,人们渴望一种全面但易于访问的教育资源,以转化我们实验等研究并指导可解释的 AI 产品界面的设计。关键词
- 如果p = bqp,量子计算机在实际上的相关程度要少得多(并且很多密码系统中断) - 如果p⊄BQP,我们知道我们应该尝试构建量子计算机 - 如果我们发现P和BQP之间的复杂性类别,我们将了解更多有关P和BQP边界的信息。- 也许我们只是喜欢学习复杂性理论 - 有趣的问题:P和BQP之间有多少个不同的类别?
由Elsevier出版。这是作者接受的手稿:创意共享归因许可证(CC:BY 4.0)。最终发布的版本(记录的版本)可在线访问:10.1016/j.compag.2024.109412。请参考任何适用的发布者使用条款。
与尼日利亚的国家技术孵化委员会(NBTI)合作进行技术孵化计划,通常涉及与我们合作,以支持技术和创新领域的创业公司和企业家。这是您可以采取的步骤来探索与NBTI的合作机会:
t可以很好地确定体育锻炼在儿童的代谢,心血管和肌肉骨骼健康(5-12岁)和青少年(13-17岁; Carson等,2016; Janssen&Leblanc,2010; Poitras et al。,2016)中起着重要作用。此外,体育锻炼通过降低焦虑和抑郁水平对儿童和青少年的心理健康产生积极影响;增加韧性,自尊和自信心;并改善情绪和福祉(Andermo等,2020; S. J. H. Biddle等,2019)。鲜为人知的是体育锻炼在学习中的作用。体育锻炼与增加与学术相关的成果的正相关,包括认知能力(例如,执行功能,注意力,记忆,记忆,理解),对学习的态度(例如,动机,动机,自我概念,满意,满意,享受),参与学习(例如,学习时间)(例如,任务时间)和学术成就,例如,标准测试; 2016; Singh等人,2019年)。