大型骨气或连续可变的非线性可以具有许多应用,从猫状态的量子量的发生范围到量子传感,到灵敏度超过Heisenberg在资源中扩展的量子传感。然而,超大非线性的产生在实验上已经极具挑战性。我们描述了一种新的协议,其中人们可以通过Ancilla模式在光学模式下有条件地应用线性操作,从而有效地生成大型Kerr型非线性,然后在探针模式下测量Ancilla和矫正操作。我们的协议可以生成高质量的schrödinger猫状态,可用于量子计算,可用于对相位空间中的未知旋转或位移进行感应,并在资源中具有超级黑姐的缩放。我们最终使用Faraday效应与光学模式相互作用的原子合奏进行了潜在的实验实现。
随着人工智能产品的普及,人类和人工智能越来越多地合作做出决策。为了使这种类型的合作取得成功,人类需要了解人工智能的能力,以便有效地校准他们的信任。在这些合作关系中,以人类可以理解的方式解释决策和预测至关重要,以鼓励信任校准。可解释人工智能领域专注于将可解释性融入人工智能,但旨在使人工智能模型更具可解释性。因此,这项研究通常从以模型为中心的角度而不是以人为中心的角度来处理解释。与此同时,行业研究人员已经制定了指导方针,以帮助界面设计师有效地生成用户友好的解释。然而,这些指导方针通常过于宽泛,无法有效指导行业设计师的日常工作。我们的研究通过两种方法解决了这一差距:一个实证实验,研究人们如何回应解释以及哪些类型的解释对信任校准最有帮助;以及一个教育资源,帮助行业设计师了解用户可能有什么问题,以及使用环境如何影响他们可能使用的解释。我们的实验结果表明,解释并不总是有助于信任校准,实际上可能会损害信任校准,尤其是面对自我能力较低的新手用户时。我们对行业设计师进行的探索性访谈和可用性测试表明,人们渴望一种全面但易于访问的教育资源,以转化我们实验等研究并指导可解释的 AI 产品界面的设计。关键词
● 非洲:在 1.5°C 情景下,非洲能源部门转型将带来大量经济和就业机会。然而,实现这一转型需要大量投资和体制改革,以解决高资本成本和债务限制问题,同时减少能源贫困。● 拉丁美洲:拉丁美洲的锂三角地区对全球转型矿产行业至关重要,具有强大的投资潜力。然而,发展强大的锂价值链面临着必须解决的环境、社会和技术挑战。● 东南亚:实现东南亚的能源转型目标需要大量的年度投资和精简的许可程序。菲律宾和越南等国家在政策改革方面取得了进展,但长期政策规划仍然是一项关键挑战。
向部落学生介绍空间科学、技术和印度在该领域的成就。 培养好奇心并激发对 STEM 领域(尤其是与空间相关的学科)的兴趣。 鼓励参与实践活动和竞赛,以提高创造力、批判性思维和团队合作精神。 突出空间科学和技术的职业道路,拓展学生的抱负和教育目标。
•如果您想迁移Cisco Catalyst 9300从Meraki管理模式转换为DNA管理模式,请联系Meraki支持。您需要为DNA许可证打开PO,但是您可以打开Meraki许可证并获得购买DNA许可证的信用。还请注意,这将把开关重置为其出厂默认设置,并从交换机中删除所有配置。
● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
本研究考察了企业生命周期在战略管理会计(SMA)信息使用与竞争战略选择之间的调节作用。本研究利用偏最小二乘结构方程模型(PLS-SEM)证明了SMA信息使用对竞争战略选择具有正向影响,并通过偏最小二乘多组分析(PLS-MGA)比较了不同生命周期阶段SMA信息使用与竞争战略选择关系的差异。我们发现,与成熟期企业相比,成长期企业的产品相关信息使用有助于差异化战略的选择。此外,与成长期企业相比,成熟期企业利用产品相关信息和竞争对手相关信息帮助管理者选择成本领先战略。本研究阐明了企业生命周期、SMA信息使用与竞争战略选择之间的关系,为管理者提供了更准确的战略决策建议,并为企业生命周期研究提供了一种方法,即利用PLS-MGA比较不同生命周期阶段变量关系的路径差异。
摘要:本文介绍了柔性自动运输系统中工件转运机器人离散操作的控制算法和通信系统,研究了控制站主站综合系统和移动机器人从站控制器之间的信息传输和接收算法。
摘要。大多数有关归纳学习的研究一直关注定性学习,这些学习从给定的事实引起了概念性的逻辑式描述。相比之下,定量学习涉及发现表征经验数据的数值定律。这项研究试图通过结合新开发的启发式方法将方程与先前开发的概念学习方法相结合,以整合两种类型的学习,而归纳学习计划AQ11则体现了这两种学习。结果系统,算法,制定了绑定观察到的数据的子集的方程,并得出了明确的逻辑样式描述,以说明这些方程的适用性条件,此外,还引入了几种新的定量ICARNing技术。单位分析通过检查变量的兼容性“单位”。apportionali o'图搜索解决了识别应输入方程的相关变量的问题。暂停搜索通过启发式评估重点关注搜索空间。物理和化学的几个例子证明了算盘的能力。