摘要。全球原油产量预计将在未来几十年中继续增加,以满足不断增长的世界人口的需求。目前,全球占主导地位的炼钢技术是传统的高度CO 2强炉 - 氧气熔炉生产路线(也称为Linz – Donawitz工艺),它将铁矿石用作原材料和可乐作为还原剂。结果,富含一氧化碳(CO)的大量特殊气体是钢制过程的各个阶段的副产品。鉴于与基于卫星的二氧化碳估计值(CO 2)相关的挑战,该排放量是由于背景水平显着的发射装置量表,因此共同发射的CO可能是钢厂碳足迹的有价值指标。我们表明,可以使用5年的测量值(2018-2022)从太空中释放区域CO从对流层监测仪器(Tropomi)的船尾5年 - 5个前体卫星上进行监测,从其相对较高的空间分辨率和每日全球覆盖范围内得到了有益的。我们分析了所有带有爆炸炉和碱性氧气炉的德国钢厂,并获得相关的CO排放量在每个位置50–400 kt yr -1的范围内。与各自的CO 2排放的比较,从欧盟排放交易系统的排放贸易数据可用的发射安装水平上产生了线性关系,与部门特异性CO / CO / CO 2的发射率为3.24%[2.73– 3.89; 1σ],表明将CO用作可比钢生产地点的CO 2排放的可行性。在其他钢生产地点进行的评估表明,派生的CO / CO 2发射比也代表了德国以外的其他高度优化的最先进的Linz – Donawitz钢铁钢铁工厂,并且如果通过对其他感应的CO排放,则在估算群体的co 2上的估计,该发射率可能是有价值的,只要对其他人的影响就会产生造成的影响。
在 DRAM 器件中制造电荷存储电容器时,高纵横比 (AR) 沟槽对于实现大电容值必不可少。高 AR 沟槽的蚀刻会受到固有 RIE 滞后机制的影响,这是由于深沟槽底部的离子能量和蚀刻物质数量减少所致。本文提出了两种方法来尽量减少这些问题,从而实现更高的硅蚀刻速率和更深的沟槽。本文所述工作中使用的气体混合物为 HBr + NF 3 + O 2 。沟槽蚀刻工艺的设计目的是在蚀刻沟槽时在侧壁上连续沉积一层薄钝化膜。这种氧化物状钝化膜 (SiO x F y Cl z ) 可防止沟槽侧壁在 XY 平面表面被蚀刻时被蚀刻。在蚀刻过程中平衡形成钝化膜对于在高纵横比沟槽蚀刻中实现高度各向异性至关重要。尽管钝化膜形成于包括蚀刻前沿在内的所有表面上,但沟槽底部的膜却不断被入射到该表面上的高能离子去除。然而,侧壁上的膜不受离子轰击(除了那些以掠射角接收离子且能量 > 阈值能量的区域),因此不会被蚀刻,从而防止硅的横向蚀刻。该过程还提高了掩模选择性,因为钝化膜也沉积在掩模表面上,从而降低了其有效蚀刻速率。据悉,蚀刻工艺内置有沉积组件,可在沟槽表面形成氧化物状钝化膜。由于沟槽开口附近的壁暴露在高浓度反应物等离子体中的时间最长,因此此处的沉积物较厚(> 25 nm),并随着深度逐渐变薄至 < 5 nm。沟槽下部沉积物较薄的另一个原因是,从倾斜掩模偏转的一些离子以掠射角到达该区域并使薄膜变薄。顶部沉积物较厚的直接后果是开口收缩,从而减小了这一临界尺寸,这反过来又通过减少进入沟槽孔的离子和中性粒子的数量而增加了 RIE 滞后。因此,可实现的深度减小,电池电容也减小了。显然,通过减薄衬里定期扩大该开口将允许更多蚀刻物质进入沟槽,底部的立体角增加,从而实现更高的硅蚀刻速率。虽然减薄可以在单独的系统中完成,但我们建议在本文中现场执行此步骤。需要定制此原位等离子清洗工艺,以便在此步骤中不会显著蚀刻掩模。这很关键,因为减薄工艺按要求,等离子体中几乎没有或完全没有沉积成分。我们已成功使用硅烷(例如 SiH 4 )和含 F 气体(例如 NF 3 )的混合物以及少量或完全没有氧气来进行此减薄步骤。另一种方法涉及去除钝化层
数据来源:截至 2024 年 9 月的 FactSet。注:指标计算为截至 2023 年 12 月 31 日基础指数成员在每个类别中的支出总和。图表表示 2023 年期间分配给每个类别(资本支出、现金并购、股息、股票回购、净债务偿还和现金积累)的总支出比例。
符合条件的HQLA是根据LCR规则在分子中纳入的未固定液体资产的数量。LCR规则将HQLA分为1级资产和2级资产。1级包括储备金要求的美联储银行余额以及最高质量的液体和易于营销的证券,例如财政部或美国政府机构发行或担保的证券。2级资产进一步分为指定A和B的类别。2A级资产受15%的发型约束,包括美国政府资助的企业或主权实体发行或担保的某些证券,不符合1级的资格,但要受到LCR规则中某些限制。2B级资产的发型为50%,包括某些公司债务证券,某些美国市政证券和公开交易的普通股票。
• 患者护理地点类型 • 设施类型 • 医院教学状况 • 医院床位大小 • 每年新生儿入院人数 a • 每年出生 b 新生儿入院人数 • 每年出生 c 新生儿入院人数 • 出生入院百分比,计算公式为(出生入院人数/新生儿入院人数)x 100 • 设施提供的新生儿护理级别 d • 设施是否接受新生儿转院接受各种指定的复杂手术 e • 出生体重属于以下五类的新生儿入院人数和百分比:a) ≤750g,b) 751-1000g,c) 1001-1500g,d) 1501-2500g,e) >2500g a 来自“年度医院调查”问题:“不包括一级单位(新生儿育婴室),记录新生儿进入特殊护理育婴室(二级)和重症监护病房(二级/三级、三级、四级)的人数。” IV)”。每年新生儿入院人数等于出生入院人数与非出生入院人数之和。
∗ 我们感谢 Hildegunn Kyvik-Nordås 以及厄勒布鲁大学和 Ratio 研讨会的参与者提供的有益评论。Lodefalk 和 Engberg 感谢 Ratio 提供的资金支持,Lodefalk 感谢 Jan Wallander 和 Tom Hedelius(拨款 P19-0234)以及 Torsten Söderberg 基金会(拨款 E46/21)提供的资金支持。Koch 和 Schroeder 感谢嘉士伯基金会提供的资金支持。† 厄勒布鲁大学和 Ratio,瑞典。电子邮件:erik.engberg@oru.se。‡ 奥胡斯大学,丹麦。电子邮件:mkoch@econ.au.dk。§ 通讯作者:Magnus Lodefalk,副教授。地址:厄勒布鲁大学经济学系,瑞典厄勒布鲁 SE-70182,电话:+46 19 303407,+46 722 217340;全球劳工组织,德国埃森;比率研究所,瑞典斯德哥尔摩。电子邮箱:magnus.lodefalk@oru.se。¶ 丹麦奥胡斯大学。电子邮箱:sschroeder@econ.au.dk。
2017 年基线成人 SAAR 合格患者护理地点: • 成人医疗重症监护病房 (ICU) 和病房 • 成人内外科 ICU 和病房 • 成人外科 ICU 和病房 • 成人降级病房 • 成人综合血液学-肿瘤科病房 2017 年基线儿科 SAAR 合格患者护理地点: • 儿科医疗 ICU 和病房 • 儿科内外科 ICU 和病房 • 儿科外科病房 2018 年基线新生儿 SAAR 合格患者护理地点: • II 级新生儿降级托儿所 • II/III 级新生儿重症监护病房 (NICU) • III 级 NICU • IV 级 NICU* *2019 年 12 月之前,设施将 IV 级 NICU 报告为 NHSN 中的 III 级 NICU。从 2019 年 12 月开始,NHSN 为 III 级和 IV 级新生儿重症监护室创建了两种不同的位置类型,允许设施分别报告每种类型的数据。NHSN 每隔几年就会开发新模型,NHSN 将此过程称为“重新基准化”。没有设定频率
方法图1示出了传统上用于制造FPC的减成法。在铜箔层上形成抗蚀层,在蚀刻过程中,铜箔层的未覆盖部分被溶解并去除。之后,去除抗蚀层,铜箔层的剩余部分成为线路。在蚀刻过程中,蚀刻不仅在铜箔层的厚度方向上进行,而且在横向(侧蚀)方向上进行,这使得在高密度布线中难以缩小线路间距。此外,由于使用厚铜箔,需要蚀刻大量的铜材料,这导致侧蚀的进展变化很大,因此线路宽度变化很大。此外,蚀刻开始的铜箔层的上部比下部蚀刻得更多,结果,线路横截面的顶部比底部更窄
对于永久性结构,建议温度高于 150 ° C。烤箱烘烤会增加交联,同时应力的增加最小。 存储 避免光照,存放在 4 – 21ºC 的直立密闭容器中。将光刻胶远离氧化剂、酸、碱和火源或点火。 处理和处置 请参阅 SDS 以了解处理和适当的 PPE。 HARE SQ™ 光刻胶含有易燃液体;远离火源、热源、火花和火焰。这种 HARE SQ™ 光刻胶与光刻胶处理中使用的典型废物流兼容。用户有责任按照所有当地、州和联邦法规进行处置。