自然语言处理(NLP)和机器学习(ML)领域的最新发展已显示自动文本处理的显着改进。同时,人类语言的表达在发现心理健康问题中起着核心作用。虽然口语在接受患者的访谈中被隐式评估,但书面语言也可以为临床专业人员提供有趣的见解。现有的工作中经常研究心理健康问题,例如抑郁或焦虑。然而,还在研究饮食失调的诊断如何从这些新技术中受益。在本文中,我们介绍了该领域最新研究的系统概述。Our investigation encompasses four key areas: (a) an analysis of the metadata from published papers, (b) an examination of the sizes and speci fi c topics of the datasets employed, (c) a review of the application of machine learning techniques in detecting eating disorders from text, and fi nally (d) an evaluation of the models used, focusing on their performance, limitations, and the potential risks associated with current methodologies.
近年来,人工智能(AI)越来越多地用于解决城市的经济,社会,环境和治理挑战。由于其先进的能力,AI将成为地方政府实现智能和可持续发展的主要手段之一。AI用于城市规划的利用是一个相对研究的研究领域,特别是在理论与实践之间的差距方面。这项研究对正在考虑或应用AI技术的城市规划领域进行了全面的综述,并分析了AI技术如何支持或有可能支持智能和可持续发展的发展。关于方法论方法,这是PRISMA协议后的系统文献综述。获得的见解包括:(a)早期采用者在城市规划中的现实世界AI应用程序正在为更广泛的地方政府AI采用铺平道路; (b)在城市规划中实现更广泛的AI采用涉及主要利益相关者之间的合作和伙伴关系; (c)大数据是城市规划中有效AI利用的组成部分,并且; (d)人造和人类智能的融合对于充分解决城市化问题并实现智能和可持续发展至关重要。在视线中这些突出了通过高级数据和分析方法使计划更智能的重要性。
摘要 用户对人工智能 (AI) 系统的信任已得到越来越多的认可,并被证明是促进采用的关键因素。有人提出,支持人工智能的系统必须超越以技术为中心的方法,转向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本评论旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。选择最合适的信任定义来描述特定环境中的用户信任应该是重点,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了从开发到监控人工智能系统的过程中用户参与的重要性。研究还发现,用户和系统的不同环境和各种特征也会影响用户信任,强调了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论支持 AI 的系统的每个情况下,都需要直接解决用户信任问题。此外,校准用户与 AI 的关系需要找到不仅对用户而且对系统都适用的最佳平衡。
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
aabstr abtract Act ..在这项研究中,开发了一种数据驱动的深度学习模型,以快速准确预测温度演化和金属添加剂制造过程的熔融池尺寸。该研究的重点是通过直接能量沉积制造的M4高速钢材料粉末的批量实验。在非优化过程参数下,许多沉积层(以上30)通过由覆层材料对热史的高灵敏度引起的样品深度产生了巨大的微观结构变化。在先前的研究中通过实验测量验证的批量样本的2D有限元分析(FEA)能够实现定义在不同过程设置下温度场进化的数值数据。训练了馈送前向神经网络(FFNN)方法,以重现由FEA产生的温度场。因此,训练有素的FFNN用于预测初始数据集中未包含的新过程参数集的温度字段历史记录。除了输入能量,节点坐标和时间外,还认为五个相关的层数,激光位置以及从激光到采样点的距离可提高预测准确性。结果表明,FFNN可以很好地预测温度演化,在12秒内精度为99%。
硅基涂层体系中应引起重视的基本研究问题是:(1)研究添加剂(如硼、锗)、水分和氧压对氧化物粘附性和粘度的影响,以便为有效减少和控制密封剂和水垢开裂提供必要的理解和数据;(2)为开发具有最佳热膨胀、应变耐受性和可塑性的双层和玻璃涂层进行裂纹管理,进行必要的分析和建模;(3)研究真实的功能梯度涂层,利用涂层的梯度和/或一系列层来控制裂纹的萌生,特别是裂纹的扩展;(4)在可能的情况下,包括测量、分析和实际建模施加应力对涂层系统的影响;(5)在二氧化硅作为离子导体的较高温度下,电解抑制通过二氧化硅水垢的传输。
本文献综述分析了当前和基础研究,这些研究涉及女性创业与 iDE 确定的繁荣目标之间的联系。这些繁荣目标反映了我们的支柱,但更重要的是,它们反映了 iDE 客户在被问及繁荣对他们意味着什么时提出的共同主题。主题包括营养、健康和卫生;教育;家庭资产和收入;市场弹性;赋权和社会包容。本综述中重点介绍的文献向我们指出了研究人员和开发同行发现的这些主题与对女性企业家的投资之间的联系,以指导我们在制定 iDE 战略时应考虑哪些因素。所包含的文献强调了我们在设计计划时必须考虑的积极关联和缓解/背景因素,重点关注 iDE 运营所在国家/地区的人们眼中的繁荣:洪都拉斯、尼加拉瓜、加纳、肯尼亚、莫桑比克、马达加斯加、赞比亚、埃塞俄比亚、孟加拉国、尼泊尔、柬埔寨、越南和具有类似背景的邻国。
摘要 用户对人工智能 (AI) 系统的信任已越来越多地得到认可,并被证明是促进采用的关键要素。有人提出,人工智能系统必须超越以技术为中心的方法,走向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本综述旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。重点应该是选择最合适的信任定义来描述特定环境中的用户信任,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了用户参与从开发到监控人工智能系统的重要性。研究还发现,不同环境以及用户和系统的各种特征都会影响用户信任,这凸显了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论人工智能系统的每一个环境中,都需要直接解决用户信任问题。此外,校准用户与人工智能的关系需要找到不仅对用户而且对系统都适用的最佳平衡点。
支持AI的合成生物学具有巨大的潜力,但也显着增加了生物风格,并带来了一系列新的双重使用问题。鉴于通过结合新兴技术所设想的巨大创新,随着AI支持的合成生物学可能将生物工程扩展到工业生物制造中,因此情况变得复杂。但是,文献综述表明,诸如保持合理的创新范围或更加雄心勃勃的目标以促进巨大的生物经济性不一定与生物安全对比,但需要齐头并进。本文介绍了这些问题的文献综述,并描述了新兴的政策和实践框架,这些框架横渡了指挥和控制,管理,自下而上和自由放任的选择。如何实现预防和缓解未来AI支持的Biohazards,故意滥用或公共领域的预防和缓解未来的生物危害的方法,将不断发展,并且应不断发展,并且应出现自适应,互动方法。尽管生物风格受到既定的治理制度的约束,而且科学家通常遵守生物安全方案,甚至实验性,但科学家的合法使用可能会导致意外的发展。生成AI实现的聊天机器人的最新进展激起了人们对先进的生物学见解更容易获得恶性个人或组织的恐惧。鉴于这些问题,社会需要重新考虑应如何控制AI支持AI的合成生物学。建议可视化手头挑战的建议方法是whack-a摩尔治理,尽管新兴解决方案也许也没有那么不同。
