使用限制:如发生特殊情况(例如邻近中心意外关闭),在与 OCCD 协调后,BTA 高空等候区之一的开放可能会导致任务结束。使用时间段:无限制 •如果激活 TRA44,则不能使用 FR04 的任何 EPT,但基于 F2 炉床的圆形 EPT 除外,并且将 TRA 的活动限制在 A 部分和 B 部分的体积内。•如果 D54 A 或 C 处于活动状态,则焦点 F2 无法使用。•如果 TRA44 和 D54 A 或 C 同时激活,则 EPT FR04 无法使用。•无法同时激活的循环电路。首选入口点: •环形: - F1:SUDAS - F2:OMEDA – ABRON - F3:AJO •赛马场和“Papillon”: - F1/F2:SODRI – ABRON - OMEDA - F1/F3:SUDAS – AJO - F2/F3:LONSU – SUDAS - AJO
超薄暗物质(ULDM)是领先的良好动机候选者之一,在粒子物理学和宇宙学标准模型之外,许多理论中都预测了这些候选。在物理和天文实验中搜索ULDM的兴趣越来越多,主要假设ULDM和正常物质之间还有其他相互作用。在这里我们证明,即使ULDM仅具有重力相互作用,它也应引起太阳系中的引力扰动,该引力扰动可能足够大,可以在未来的重力波(GW)激光干涉仪中引起可检测的信号。我们研究了米歇尔森时间 - 时间延迟干涉仪对各种自旋的ULDM的敏感性,并通过针对μHz频率的空间基GW检测器来探测具有质量m mass10-18 eV的向量ULDM。我们的发现表明,GW检测器可能会直接探测一些质量范围,否则否则挑战了。
引力猫态,引力场充当着一个环境,其中宏观物体(类似于薛定谔的猫)以不同引力态的叠加存在。这些状态不仅具有理论意义,而且也为实验探索带来了希望,为研究引力和量子力学的相互作用打开了独特的窗口 [6,7]。从历史上看,围绕与此相关的一个基本问题一直存在讨论:我们如何确认引力是否必须被视为一种量化现象,或“为什么我们需要量化一切,包括引力” [8]?此外,是否存在一种普遍适用的实验方法,可以确定引力是否在量子层面上起作用 [9,10]?根据量子信息论的某些观点,有人认为,能够在两个系统之间产生纠缠的相互作用必然具有量子特性。因此,量子引力的一个重要指标是观察到由引力相互作用引起的大质量态之间的纠缠[11,12]。与目前依赖于检测引力介导的纠缠的测试相反,Lami等人[13]最近提出了一种仅关注相干态的新方法。有趣的是,他们的方法不需要产生广泛离域的运动状态或检测纠缠,因为纠缠不会发生在该过程的任何阶段。因此,近年来,引力猫态的研究引起了相当大的关注[14-17],这受到理论框架和实验技术的进步的刺激。一些研究人员利用引力波探测、量子光学和精密测量技术等工具,提出了各种生成和观察引力猫态的方案。这些努力不仅深化了
摘要。Kepahiang Regency位于岩浆弧和大陆板的边界区域,带有海洋板,以Solfatara,Fumarole和Alteration Rocks的形式在表面上出现了一些地热甜度,因此它成为地热能的前景。进行的研究的目的是找出围绕Kepahiang的地热储层的分布。这项研究是通过重力方法进行的,因此可以对地下密度分布进行描述。本研究使用全球重力模型加上(GGMPLUS)数据,分辨率为220米,即自由空气异常(FAA)和地形。基于数据处理的结果,获得了一个完整的布格异常(ABL),该异常是区域异常和残留异常的组合。通过使用移动平均方法将异常分开。异常图提供了三种分布模式的信息,即高,中和低异常。残留异常是使用2D反转方法建模的多达七个切片,这些切片怀疑地热储层。结果显示,据称该面积在46.7-50.9 mgal之间,据称是一个地热储层,密度值<2.5 g/cm 3在不同的深度下,每个切片的深度不同。在某些区域中,地热制造的不可分性,这些区域的储存量是由于存在密度为2.6-2.7 g/cm 3的密度所致。摘要。进行的研究的目的是了解Kepahiang周围地热储层的分布。Kepahiang Regency位于岩浆弧的边界区域和带有海洋板的大陆板的边界区域,导致以Solfatara,Fumarole,Fumarole和变化岩的形式出现在表面上的几种地热表现,因此它成为地热能的前景。这项研究是使用重力方法进行的,因此可以产生地下密度分布的图片。本研究使用全球重力模型加(GGMPLUS)数据,分辨率为220米,即自由空气异常(FAA)和地形。基于数据处理的结果,获得了完整的布格异常(CBA),这是区域异常和残留异常的组合。通过使用移动平均方法将异常分开。异常图提供了三种分布模式的信息,即高,中和低异常。残留异常是使用2D反转方法对七个切片进行建模的,该切片怀疑具有地热储层。结果表明,怀疑CBA值在46.7-50.9 mgal之间的区域被怀疑具有密度值<2.5 g/cm 3的地热储层在每个切片的不同深度下。在某些地区没有地下储层的地热性别兴趣是由于存在密度为2.6-2.7 g/cm 3的宿主岩石所致。
根据相对论,理想时钟的读数被解释为沿着它在时空中的经典轨迹所经过的固有时。相反,量子理论允许将许多同时的轨迹与一个量子钟关联起来,每个轨迹都有适当的权重。在这里,我们研究叠加原理如何影响简单时钟(一个衰减的两能级原子)观察到的引力时间膨胀。将这样的原子置于位置叠加中使我们能够分析量子贡献对自发辐射中经典时间膨胀的表现。特别地,我们表明,在引力场中分离波包的相干叠加中制备的原子的发射率不同于这些波包的经典混合中原子的发射率,这引起了量子引力时间膨胀效应。我们证明了这种非经典效应也表现为原子内部能量的分数频率偏移,该偏移在当前原子钟的分辨率范围内。此外,我们还展示了空间相干性对原子发射光谱的影响。
摘要 我们展示了汉密尔顿行为的数字量子模拟,该行为控制着量子力学振荡器和光场之间的相互作用,通过引力效应在它们之间产生量子纠缠。这是通过利用玻色子量子比特映射协议和数字门分解来实现的,这些协议和数字门分解使我们能够在 IBM Quantum 平台中可用的量子计算机中运行模拟。在应用误差缓解和后选择技术后,我们展示了在两台不同的量子计算机中获得的实验保真度结果。所获得的结果保真度超过 90%,这表明我们能够对相互作用进行忠实的数字量子模拟,从而对光机械系统中通过引力手段产生量子纠缠进行忠实的数字量子模拟。
上行的职业外骨骼以支撑工人的上臂,通常旨在提供抗授权支持。尽管典型的工作活动需要工人进行静态和动态的影响,但文献中的大多数研究都调查了上LIMB职业外骨骼在静态和准静态活动中的影响,而只有少数工作集中于动态任务。本文介绍了由被动上限上LIMB职业外骨骼对重复性手臂运动过程中肌肉活性提供的不同水平抗拨动支持的影响(约为手臂重力负荷的60%至100%)的系统。通过有或没有外骨骼的肌肉激活来评估外骨骼对肌肉活性的影响。考虑了肩部全屈伸延伸周期和子运动的平均肌肉激活,即臂伸入臂伸入(即屈曲)和臂下部(即延伸)运动。结果表明,在考虑完整的屈伸延伸周期和手臂伸向运动中,抗质量SUP端口和肌肉活性减少之间存在准线性相关性(与不佩戴外骨骼相比,减少了64%和61%)。在考虑降低手臂的运动时,提供接近或高于100%的手臂重力负荷的抗骨载支撑,导致伸肌的肌肉激活增加(最高127%),这表明这种抗raviatiation量可能对动态任务中肩部的完全降低肩部的生物力学负荷无效。
量子信息是一个引人入胜的主题,具有彻底改变我们对宇宙的理解的能力,并且已将其作为一种工具来理解在各种不同环境中的相对论现象,例如加速度和黑洞(称为异常和霍金效应)[1,2]。量子纠缠已被用作增强重力波检测器灵敏度的方法。参考文献[3,4]研究了通过收集相互量子相关性并讨论每个光束在干涉仪中传播的方式的差异来消除过滤腔的可行性。参考[5]提出了一种基于量子纠缠的重力波检测的量子速度计测量方案的新实现。除此之外,一些论文原则上研究了受重力波影响的量子特性,包括量子烙印[6],量子时间扩张[7],纠缠收集[8],激发/对单个原子的兴奋/去敏化[9,10]等。在[11]中还研究了重力场对量子纠缠的影响。,但大多数研究都集中在两体纠缠上。在本文中,我们将研究重力波对量子多体态的影响,并讨论实验检测对压力波的可行性。
引力退相干 (GD) 是指引力在驱动量子系统经典外观方面的作用。由于底层过程涉及广义相对论 (GR)、量子场论 (QFT) 和量子信息中的问题,因此 GD 具有根本的理论意义。有各种各样的 GD 模型,其中许多涉及与 GR 和/或 QFT 不同的物理学。本概述有两个具体目标和一个中心主题:(i) 提出基于 GR 和 QFT 的 GD 理论并探索它们的实验预测;(ii) 将其他 GD 理论置于 GR 和 QFT 的审查之下,并指出它们的理论差异。我们还描述了未来几十年太空中的 GD 实验如何在两个层面提供证据:(a) 区分替代量子理论和非 GR 理论;(b) 辨别引力是基本理论还是有效理论。
交付仪式在土伦海军基地举行,出席仪式的有法国海军装备总工程师、法国国防军工集团副总经理蒂埃里·卡利尔、海军行动部队司令、海军中将泽维尔·博杜阿尔以及工业家、大西洋造船厂总经理洛朗·卡斯坦和海军集团服务总监文森特·马丁诺-拉加德。 NAVARM(DGA 的意大利对应机构)和军备计划合作联合组织(OCCAr)的代表也出席了会议。