最近的研究表明,在不久的将来,也许可以通过桌面实验探测到引力诱导的纠缠。然而,目前还没有针对此类实验的彻底开发的模型,其中纠缠粒子在更根本上被视为相对论量子场的激发,并使用场可观测量的期望值来建模测量值。在这里,我们提出了一个思想实验,其中两个粒子最初在一个共同的三维 (3D) 谐波陷阱内以相干态叠加的形式准备。然后,粒子通过它们相互的引力相互作用产生纠缠,这可以通过粒子位置检测概率来探测。本研究对该系统的引力诱导纠缠进行了非相对论量子力学分析,我们将其称为“引力谐波”,因为它与氦原子中近似电子相互作用的谐波模型相似;纠缠在操作上是通过物质波干涉可见性确定的。本研究为后续研究奠定了基础,后续研究使用量子场论对该系统进行建模,通过相对论修正进一步深入了解引力诱导纠缠的量子性质,并提出量化纠缠的操作程序。
量子力学改变了我们看待物理世界的方式。在过去的二十年里,物理系统的量子特征也成为不同技术分支的资源[1,2]。特别是当计量学遇到量子力学时,一系列新特征被用来提高物理测量的精度,并构想出新的量子增强协议来表征信号和设备[3-5]。相对论也改变了物理学的范式,并找到了相关的技术应用[6]。因此出现了一个问题:是否可以联合利用相对论和量子力学特征来提高物理测量的精度。在本文中,我们遵循这一想法并证明一个典型的相对论特征——引力时间膨胀,确实可以代表一种资源,它可以与量子叠加一起使用,以提高估计引力常数或其变化的精度。
电化学能源转换技术在太空任务中起着至关重要的作用,例如在国际空间站(ISS)的环境控制和生命支持系统(ECLSS)中。它们对于未来的氧气,燃料和化学生产的长期太空旅行也至关重要,在这种氧气,燃料和化学生产中,不可能从地球上重新供应资源。在这里,我们提供了当前现有的电解能转化技术,用于空间应用,例如质子交换膜(PEM)和碱性电解仪系统。我们讨论了这些设备中的界面过程受到减少的重力影响,并对电解系统的未来应用提供了前景,例如,现场资源利用率(ISRU)技术。还讨论了计算建模的观点,以预测减少的重力环境对管理电化学过程的影响,并提出了实验建议,以更好地理解降低引力环境中燃气气泡形成和脱离等效率效应过程。
当今世界,电力在人类生活中发挥着重要作用,如家庭、工业和制造、医疗、照明、空间技术、空气动力学等。换句话说,没有电,生活就是空虚的。电力可以通过多种方式产生,如水电站、地热电站、太阳能发电厂、风力发电厂、蒸汽发电厂等。印度拥有丰富的可再生能源资源,有潜力产生超过 5000 万亿兆瓦 (MW) 的电力。电力可以通过水电站、地热发电厂、太阳能发电厂、风力发电厂、蒸汽发电厂产生。印度现有的这些不同的发电系统可能目前很丰富。但这些可用资源正在枯竭,尤其是发电资源,如涡轮机用水、风能、地热能、太阳能等。另一方面,即使在世界上,用于发电的投入资源也可能不会永远存在。未来的某一天它们会被耗尽。现在它们并不是全年都有恒定的输出;比如水力发电在冬季水量减少,水容量可能会减少;各个地区的风力都不一样,太阳也可能停止其太阳能发电,另一方面,我们看到的太阳能发电厂依赖于光照条件。类似的情况可能在很长一段时间后才会发生。而且,没有发电厂可以不受限制地在所有地方建设。在没有所有这些资源的地区可能没有电力。除此之外,每个人都知道地球的资源是有限的,总有一天,它们会枯竭。没有人能否认这一事实。更重要的是,该国人口不断增加,加上众多行业使用非常高的电能投入。例如,根据该国概况,现有的发电厂没有足够的能力将生产的电能分散到印度的所有地区。此外,电力分布覆盖的地区已经老化,电力也存在波动。同时,电力传输材料和配电成本非常昂贵,需要复杂的材料安排,而且在传输过程中,由于电线电阻和传输长度而导致的材料浪费,会造成电力损失。本文讨论的另一个主要问题是,发电来源正在失去其容量。特别是大坝的水量正在减少。这导致水力发电厂的发电量下降。我们必须关注的是地球上的可用资源,当我们看着以前发明的发电厂利用地球资源而不考虑人类未来的生活时。
TGD 导致了 [46, 56] 中讨论的两种关于物理学的观点。在第一种观点 [14, 13, 17] 中,物理学被视为时空几何,在 H = M 4 × CP 2 中被确定为 4 曲面,在更抽象的层面上,物理学是“经典世界的世界”(WCW)的几何,由基本作用原理的优选极值(PE)空间组成,将玻尔轨道的类似物定义为具有奇点的极小曲面。在第二种观点 [29] 中,物理学被简化为数论概念,类似于动量空间的 M 8 中的 4 曲面定义了基本对象。类似于动量位置对偶的 M 8 − H 对偶 [42, 43] 将这两种观点联系起来。 M 8 c (复数 M 8 ) 中的 4 曲面,可解释为复数八元数,它们必须是结合的,即它们的法向空间是四元的。对于给定的时空区域,它们由实参数多项式 P 的根延至 M 8 c 中的多项式来确定。这些根定义了 M 4 c ⊂ M 8 c 的质量壳层集合,通过全息术,它们定义了 H 的 4 维表面。H 级的作用原理由 TGD 的扭转升力决定,是 4-DK¨ahler 作用与体积项 (宇宙常数) 之和。它不是完全确定性的,H 中作为 PE 的时空曲面与玻尔轨道类似,可视为具有框架的肥皂膜的类似物,对应于确定性失效的奇点。除了由 P 的根确定的光骨架本时 a = an 对应的双曲 3 曲面外,框架还提供额外的全息数据。框架包括部分子 2 曲面的类光轨道和连接它们的弦世界面。新颖之处在于,与零能量本体论 (ZEO) [33] 一致的是,类空间数据对于全息术来说是不够的,还需要类时间数据,而弦世界面对于编织和 TQC 来说是绝对必要的。
∗ 首席科学家,空间材料实验室,AIAA 成员。通讯作者。† 系统工程部技术人员。‡ 高级工程专家(退休),通信系统与工程分部。§ 工程专家,制导与控制分部,AIAA 成员。¶ 高级项目负责人,系统分析与模拟分部,高级 AIAA 成员。‖ 高级项目负责人,CSG 技术。∗∗ 系统分析与模拟分部副主任。†† 研究科学家,宇宙结构研究组。
在一个多折的宇宙中,重力从纠缠中通过多重机制出现。结果,重力样效应出现在它们是真实或虚拟的纠缠粒子之间。远距离,无质量的重力是由无质量虚拟颗粒的纠缠导致的。大量虚拟颗粒的纠缠导致非常小的尺度上的重力贡献。多重机制也导致了一个离散的时空,具有随机的行走分形结构和非交通性几何形状,该几何形状是Lorentz不变的,并且可以用显微镜黑洞对时空节点和颗粒进行建模。所有这些恢复在大尺度上的一般相对论,半古典模型保持有效,直到比通常预期的尺度较小。重力可以添加到标准模型中。这可能有助于解决标准模型(SM)的几个开放问题,而没有重力以外的其他新物理学。这些考虑暗示了重力与标准模型之间的更强关系。
伽罗瓦群置换多项式的根,多项式通过 M 8 − H 对偶确定时空区域。根对应于质量平方值,一般为代数数,因此对应于 M 4 c ⊂ M 8 c 中的质量双曲面。H 图像对应于光锥固有时间常数值 a = an 的 3 双曲面。因此,伽罗瓦群可以置换具有类时分离的点。但请注意,a 的两个值的实部或有理部可以相同。这乍一看很奇怪,但实际上证实了这样一个事实:定义 TQC 的类时辫对应于定义弦世界面的弦状对象的 TGD 类时辫(也涉及重新连接),它们现在不是作为物理状态的类空实体的时间演化,而是对应于定义完全固定全息术所需边界数据的类时实体。它们的存在是由于所涉及的作用原理的决定论的微小失败而必然出现的,并且完全类似于肥皂片的非决定论,肥皂片的框架充当了决定论失败的座位。
结合重力和量子一直是基本物理学中的主要未解决问题。已经开发了量子重力理论(字符串理论,循环量子重力等),但是(1)不同学校之间没有一致,并且(2)没有共识,每个人都暗示[可能夸张,但没有太多)。也有彭罗斯(Penrose)和其他未量化引力的崩溃理论。
遗传学在恶性肿瘤的发展和进展中起着重要作用。相关基因的识别是一个高维数据处理问题。为了解决维数灾难,提出了一种混合方法,即金字塔引力搜索算法 (PGSA),其中基因数量循环减少。PGSA 由两个元素组成,一个过滤器和一个包装器方法(受引力搜索算法启发),该方法通过循环进行迭代。在每个循环中选定的基因会传递到后续循环以进一步降低维数。PGSA 尝试使用信息量最大的基因来最大化分类准确度,同时减少基因数量。结果报告了针对乳腺癌的多类微阵列基因表达数据集。已经实施了几种特征选择算法以进行公平的比较。PGSA 在准确度方面排名第一(84.5%),有 73 个基因。为了检查所选基因是否对患者的生存和治疗反应有意义,对这些基因进行了蛋白质-蛋白质相互作用网络分析。在检查遗传网络时出现了一个有趣的模式。HSP90AA1、PTK2 和 SRC 基因位列排名最高的瓶颈基因之列,DNA 损伤、细胞粘附和迁移途径在网络中高度丰富。