摘要:辐射诱导的旁观者效应(RIBE)描述了在受辐射的细胞附近的非靶向细胞中发生的生物事件。已经使用了各种实验程序来研究肋骨。有趣的是,大多数微辐照实验都是用α颗粒进行的,而大多数中型转移都是用X射线进行的。具有高功能,同步X射线代表了一个真正的机会,可以通过应用相同的辐射类型的这两种方法来学习RIBE。通过中等转移方法在人类纤维细胞中诱导的肋骨导致辐射后10分钟至4 h的DNA双链断裂(DSB)产生。这种肋骨被发现取决于剂量和供体细胞的数量。用微辐照方法诱导的肋骨产生了同样的时间出现的DSB。含有高浓度的磷酸盐的培养基可抑制肋骨,而富含钙的培养基则增加了磷酸盐。 在同步X射线,培养基转移,微辐照和6 MeV光子照射下模拟标准放射疗法的6 MeV光子照射之后,评估了RIB对生物剂量的贡献:RIBE分别代表小于1%,约5%,大约5%,约为初始剂量的20%。 然而,根据其放射性敏感性状态及其响应辐射释放Ca 2+离子的能力,RIB可能会在周围组织中产生有益的或其他有害的作用。含有高浓度的磷酸盐的培养基可抑制肋骨,而富含钙的培养基则增加了磷酸盐。在同步X射线,培养基转移,微辐照和6 MeV光子照射下模拟标准放射疗法的6 MeV光子照射之后,评估了RIB对生物剂量的贡献:RIBE分别代表小于1%,约5%,大约5%,约为初始剂量的20%。然而,根据其放射性敏感性状态及其响应辐射释放Ca 2+离子的能力,RIB可能会在周围组织中产生有益的或其他有害的作用。
摘要纳米钻阵列与光电探测器的组合可以成为SI平台上大规模制造微型和具有成本效益的折射率传感器的策略。然而,互补的金属 - 氧化物 - 血管导体(CMOS)制造过程尤其是在可用于制造结构的材料上的限制。在这里,我们专注于使用CMOS兼容的过渡金属氮化钛(TIN)来制造纳米孔阵列(NHAS)。我们研究了使用高精度工业工艺制造的锡NHA的光学性质(50 nm,100 nm和150 nm),用于在集成的等离子,等离子折射指标传感器中使用。反射率测量显示出明显的Fano形共振,共振长度在950至1200 nm之间,这可以归因于通过NHA的非凡光学传输(EOT)。使用测量的材料介电常数作为输入,测得的光谱是通过具有很高准确性的模拟来重现的:模拟和测量的共振波长偏离小于10 nm,平均在30°和40°°的发病角度下观察到的平均4 nm偏差为4 nm。我们的实验结果表明,锡层从50到150 nm的厚度增加导致灵敏度从614.5 nm/riU增加到765.4 nm/riU,我们将其归因于具有空间扩展SPPS的孔中的单个LSPR之间的强耦合。我们的结果可用于提高锡NHA在片上等离子折射率传感器中的应用。
电池储能系统 (BESS) 应视为已通电,并使用适当的软管流。电池储能系统 (BESS) 使用直流电;请记住,当前的交流电压检测器在直流电存在的情况下不会发出警报。如果电池储能系统 (BESS) 着火,可能会发生热失控。热失控是一种化学反应,电池内部的电池发生故障,短路点燃电解质,释放过多的热量、有毒气体和易燃蒸汽。热量可能会影响周围的电池,并导致它们热失控。电池热失控的指标是:› 电池表面的热量区域强烈或不均匀› 电池冒烟或蒸汽。用水冷却可以防止热失控。水是最好的灭火剂,因为泡沫无助于冷却,并且可能会妨碍使用热成像摄像机 (TIC) 来识别电池的受影响区域。消防员应佩戴结构性 PPC 和 CABA,并且只有在动态风险评估表明这样做是安全的情况下才尝试灭火。必须为所有其他人员保持至少 8 米的禁区。如果现场人员无法使用结构性 PPC 和 CABA,则应要求具有该能力的人员参加。丛林火灾 PPC 和呼吸器无法为消防员提供足够的保护,防止热失控火灾。
摘要:微机电系统 (MEMS) 为适用于结构健康监测 (SHM) 应用的传感器微型化提供了新技术。在本研究中,基于 MEMS 的传感器,特别是压电微机械超声波换能器 (PMUT),用于评估和监测螺栓连接结构系统的预紧力。为了使螺栓连接正常工作,必须保持适当的预紧力水平。在本研究中,连接到螺栓头部和末端的 PMUT 阵列分别用作一发一收超声波检测 (UT) 场景中的发射器和接收器。主要目标是检测由 PMUT 阵列产生的声波的飞行时间变化 (CTOF),该声波沿螺栓轴在无负载螺栓和使用中的螺栓之间传播。为了模拟螺栓接头的预紧力以及声波通过螺栓传输到一组 PMUT 和从一组 PMUT 传输的声波,我们创建了一组数值模型。我们发现 CTOF 与预紧力的大小呈线性关系。通过与初步实验结果进行比较,验证了数值模型的有效性。
在SI中集成的高质量量子点(QD)的线性阵列是探索量子信息的操纵和传输的理想平台。因此,了解与SI技术兼容的底物的QD自组织机制至关重要。在这里,我们证明了INAS和INGAAS QD的线性阵列的外延生长来自AS 2和裸露和GAAS涂层Si(001)底物的分子束,由高分辨率激光干扰纳米义造影。原子力MI司法检查与高分辨率扫描和透射电子显微镜结合使用,表明,当QDS的生长选择性,横向顺序和尺寸均匀性的提高时,QDS的大小为1 nm thick thick gaas gaas buffer层是在INAS沉积之前种植的。此外,x ga 1-x作为QD的优先成核沿<110>的纳米结构的gaas-on-si(001)底物的面向面向的边缘从Adatom迁移中从(111)迁移到(111)到(001)纳米和湿润层引起的湿润层引起的EDM迁移而产生。 Stranski-Krastanov过渡。这些是相干QD的线性阵列形成的关键要素,它们的形态和结构与GAAS(001)和Si(001)平面表面上的形态和结构不同。
Angioi,S。A.欧洲的豆类:欧洲阶段的欧洲陆地的起源和结构。(2012)。环境对于豆类的烹饪时间至关重要。ciênciae tecnologia de alimentos,32,573 - 578。https://doi.org/10.1590/s0101-20612005000078 Atkinson,R.转基因苹果树中多边形蛋白酶的过度表达导致一系列新型表型,涉及细胞粘附的变化。植物生理学,129(1),122 - 133。https://doi.org/10.1104/pp.010986 Beebe,S.,Ramirez,J.,Jarvis,A.,Rao,I。,I。,&Mosquera,G。(2011)。遗传改善共同豆类和气候变化的挑战。在S. Yadav,J。Redden,L。Hatfield,H。Lotze-Campen和A. E. Hall(编辑)中。(pp。356 - 369)。作物适应气候变化。Wiley-Blackwell。https://doi.org/10.1002/9780470960929.CH25
作者的完整列表:纳塔利亚的Alzate Carvajal;渥太华大学物理公园,Jaewoo;渥太华大学,伊利姆物理Bargaoui;渥太华大学,物理学劳特拉,兰贾纳;渥太华大学,Zachary物理学;渥太华大学,化学与生物工程系,加拿大卢卡斯·斯卡夫;渥太华大学,物理梅纳德(Ménard),让·米歇尔(Jean-Michel);渥太华大学,塞思物理学达令; Argonne国家实验室,贝诺特分子工程中心;渥太华大学工程,化学与生物工程学院,阿迪纳(Adina);渥太华大学,物理
量子物理和化学问题。 [1] 为此,世界各地的研究人员正致力于开发量子计算、量子模拟和量子传感。 [2] 这项技术的优势可能有助于解决一些影响深远的问题,如理解高温超导性、进一步实现处理器中晶体管的小型化以及预测新型药物的特性。 [3–5] 量子应用的基本单位是量子比特,一般来说,量子比特是一个具有两个或多个能级的系统,可以在一段有限的时间内进入相干叠加态,这段时间称为相干时间。 [6] 目前正在研究几种作为量子比特的系统,将它们的属性与特定的应用联系起来:用于量子通信的光子,[7] 用于量子计算的超导电路,[8,9] 和用于磁场量子传感的金刚石中的氮空位。 [10,11] 其他有趣的平台包括硅中的磷杂质、[12] 量子点、[13] 里德堡原子 [14] 和捕获离子。[15,16] 所有这些潜在的量子比特平台在作为独立单元工作时都表现出非凡的特性。然而,实现量子门需要将几个这样的单元耦合起来,而这具有挑战性。同样,由于缺乏能够在阵列中精确定位量子比特的制造工艺,它们的可扩展性也受到限制。[17] 必须满足这两个要求才能实现工作的量子装置,因此这是一项不简单的任务。分子自旋量子比特 (MSQ) 是一个很有前途的平台,可以应对这些挑战。[18–23] 分子是微观的量子物体,像原子一样,但其组成更灵活,具有在纳米级形成有序结构的巨大潜力。 [24,25] 由于其合成的多功能性,可以微调多个量子比特之间的相互作用 [26–28] 并修改配体壳以满足特定的实际需求,例如将量子比特转移到固体基底上或设备中。[4,29–32] 人们对 MSQ 的兴趣迅速增长,并在短时间内取得了有关化学设计与量子特性之间关系理解的显著成果。[33–41] 现在很明显,可以实现长的相干时间 [42–45] 并且可以设计多自旋能级系统,这要归功于量子门
摘要:胶体量子点 (QD) 是有望应用于光子量子信息技术的单光子源。然而,开发具有胶体材料的实用光子量子装置需要对稳定的单个 QD 发射器进行可扩展的确定性放置。在这项工作中,我们描述了一种利用 QD 尺寸的方法,以便将单个 QD 确定性地定位到大型阵列中,同时保持其光稳定性和单光子发射特性。CdSe/CdS 核/壳 QD 被封装在二氧化硅中,以增加其物理尺寸而不干扰其量子限制发射并增强其光稳定性。然后使用模板辅助自组装将这些巨型 QD 精确定位到有序阵列中,单个 QD 的产率为 75%。我们表明,组装前后的 QD 在室温下表现出反聚束行为,并且它们的光学特性在长时间后保持不变。总之,这种通过二氧化硅壳层自下而上的合成方法和强大的模板辅助自组装提供了一种独特的策略,可以使用胶体量子点作为单光子发射器来生产可扩展的量子光子学平台。关键词:单光子源、纳米光子学、量子点、二氧化硅壳层、确定性定位
1 延世大学电气电子工程学院,首尔 03722,韩国 2 韩国科学技术研究院生物医学研究所仿生学中心,首尔 02792,韩国 3 成均馆大学电气与计算机工程系,水原 16419,韩国 4 韩国科学技术大学 KIST 学院生物医学科学与技术系,首尔 02792,韩国 5 成均馆大学智能精准医疗融合系,水原 16419,韩国 6 成均馆大学生物医学工程系,水原 16419,韩国 7 成均馆大学超智能工程系,水原 16419,韩国 * 通讯地址:mikyungshin@g.skku.edu (硕士);daniel3600@g.skku.edu(博士)