摘要 - LARGE语言模型(LLM)由于能够使用简单的自然语言提示执行临时自然语言处理(NLP)任务,因此获得了广泛的普及。呼吁LLM的一部分是他们对公众的可接近性,包括NLP技术专长的人。但是,提示在语言结构,上下文和其他语义方面可能会有很大的不同,并且修改其中一个或多个方面可能会导致任务绩效的显着差异。非专家用户可能会发现确定提高提示所需的更改是一项挑战,尤其是当他们缺乏特定领域的知识和适当的反馈时。为了应对这一挑战,我们提出了p rompt iD,一个视觉分析系统,旨在通过探索,扰动,测试和迭代进行交互,完善和测试提示。p rompt a ID使用协调的可视化效果,使用户可以通过三种策略改进提示:关键字扰动,释义扰动以及获得最佳的context中文字中的最佳示例。p rompt a ID是通过涉及NLP专家的预先研究设计的,并通过强大的混合方法用户研究进行了评估。我们的调查结果表明,P ROMPT I ID可以帮助用户在认知开销较少的情况下迭代提示,并在建议的帮助下产生多样的提示,并分析生成的提示的性能,同时超过现有的最新提示提示性能的互动。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月3日发布。 https://doi.org/10.1101/2025.01.03.631124 doi:Biorxiv Preprint
CRISPR/Cas9 技术为疾病建模和了解基因与表型之间的联系提供了独特的能力。在培养细胞中,化学介导的 Cas9 活性控制可以限制脱靶效应,并实现对必需基因的机制研究。然而,广泛使用的 Tet-On 系统通常显示“泄漏”的 Cas9 表达,导致意外编辑,以及诱导时活性较弱。泄漏在 Cas9 核酸酶活性的背景下可能是一个明显的问题,这可能导致 DNA 损伤的累积和靶细胞基因组的降解。为了克服这些缺陷,我们建立了转基因平台,以最大限度地减少 Cas9 在关闭状态下的功能,同时最大限度地提高和不损害开启状态下的基因编辑效率。通过结合条件性不稳定和 Cas9 抑制,我们开发了一种一体化(一个或多个向导 RNA 和 Cas9)超紧密、Tet 诱导系统,在各种细胞系和靶标中具有出色的动态范围(开启状态与关闭状态)。作为 Tet 介导诱导的替代方案,我们创建了一个 branaplam 调节的剪接开关模块,用于低基线和强大的 Cas9 活性控制。最后,对于需要避免 DNA 损伤的情况,我们构建了一个双重控制、Tet 诱导的 CRISPRi 模块,用于紧密和有效的转录沉默。这套升级的诱导型 CRISPR 系统可广泛应用于多种细胞类型和实验条件。
牛皮癣是一种常见的慢性炎症性皮肤病,主要影响皮肤,指甲和关节。超出其皮肤表现,牛皮癣与几种全身合并症有关。各种因素会触发或加剧牛皮癣,包括压力,感染,药物和疫苗接种。本文报告了作者所知,这是第一个已知的急性加重斑块型牛皮癣的案例,它是在带状疱疹的疱疹真空之后,作为胆量牛皮癣(GP)。一名52岁的男性在接受重组疱疹带状疱疹疫苗后2周,有长期存在斑块型牛皮癣病史突然发作GP病变。医师应保持警惕,以便对牛皮癣的潜在诱因,其中重组疱疹带状疱疹疫苗包括在内。
我们考虑具有多组分(n f> 1)退化标量字段的三维(3D)晶格su- ncÞ量表高度的理论,而u - nfÞ全球对称性,重点介绍了具有NC¼2的系统,以确定相应地描述的关键行为,以确定相应的3D s s s s cy ggg hig的关键行为。RG流的现场理论分析使人们可以识别出大量N F值的稳定带电的固定点,该值将控制以全局对称性模式u - nfÞ→Suð22 u - u - u - u - uðd-ðnf-2Þ的过渡。在Nf≥30的SU(2)晶格量规模型中观察到具有相同对称性模式的连续过渡。在这里,我们提供了几个较大值N f的蒙特卡洛数据的详细有限尺寸缩放分析。结果与在很大的限制中获得的现场理论预测有很大的一致。这提供了证据表明,suðncÞ量规Higgs田间理论提供了正确描述3D大n f连续过渡和无序阶段之间的连续过渡,在其中,风味对称性突破至Suð22 su-2Þ⊗u - u - u - u - u - u - u - n f-2Þ。因此,至少对于足够大的n f,具有多组分标量字段的3D su- ncÞ量规Higgs字段理论可以通过具有相同局部和全局对称性的晶格模型的连续性限制来定义。
1个地球科学研究所,斯洛伐克科学学院,84005布拉迪斯拉瓦,斯洛伐克2号,伊利诺伊州芝加哥大学芝加哥大学地球物理科学系,伊利诺伊州60637,美国3号,美国内布拉斯加州大学医学中心,内布拉斯加州奥马哈州内布拉斯加州大学68198-438-3375,USYASIGHITIAS BIOSTATISTION,U.S.A. 3. U.S.A.佐治亚州萨凡纳,佐治亚州佐治亚州31411,美国5地球和可持续性学院,亚利桑那北部大学,弗拉格斯塔夫,亚利桑那州弗拉格斯塔夫,亚利桑那州86011 86011,美国6古生物学系,国家自然历史博物馆,史密森尼学会国家博物馆,华盛顿州华盛顿特区,20013年,美国俄亥俄州科学院,俄亥俄州7号,新星,新北,43.55。液压实验室,美国陆军工程师研发中心。Vicksburg,密西西比州39180-6199,美国9号海洋生物学实验室,洛杉矶县县卫生区,加利福尼亚州卡森,加利福尼亚州90745,U.S.A.Vicksburg,密西西比州39180-6199,美国9号海洋生物学实验室,洛杉矶县县卫生区,加利福尼亚州卡森,加利福尼亚州90745,U.S.A.
肾脏损伤可能是心理菌患者的重大问题,主要是由于频繁输血或铁螯合剂治疗引起的铁过量而导致的。由于疾病的慢性和与铁超载相关的问题,丘脑病个体中Kidney功能障碍的发生率显着升高。研究表明,与普通人群相比,丘脑贫血患者的获取终末期肾脏疾病(ESRD)的机会显着升高[4]。全世界的丘脑贫血流行是相当多的,在东南亚,地中海和中东地区发现了最高的患病率[5]。这些人中ESRD的流行率包括医疗服务的可访问性和质量,尤其是铁螯合疗法以及对肾功能的一致监测。与Thalassya Intivicuals中ESRD发作的主要危险因素包括输血的持续时间和频率,铁螯合治疗的疗效以及诸如糖尿病和Hy-症状等其他合并症的存在[4]。与其他地区类似的苏丹患者因与疾病相关的并发症而容易受到肾衰竭的影响[6]。铁超负荷管理通常需要铁螯合疗法以减少铁累积并防止器官损害。对铁水平和器官功能的一致评估对于丘脑血症患者减少与铁超负荷相关的危害至关重要[3]。
Joshua S. Weinstock,1,2,15 Maya M. Arce,3,4,15 Jacob W. Freimer,2,3 Mineto Ota,2,3 Alexander Marson,3,4,5,6,7,7,8,8,9,9,9,9,14美国马里兰州巴尔的摩约翰·霍普金斯大学生物医学工程系2遗传学系,斯坦福大学,斯坦福大学,美国加利福尼亚州94305,美国3 Gladstone-UCSF基因组免疫学研究所,旧金山,CA 94158,美国加利福尼亚大学,加利福尼亚大学,旧金山94158加利福尼亚大学伯克利分校,加利福尼亚州伯克利分校,美国6日64720,6人类遗传学研究所(IHG),加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州94143,美国7帕克癌症癌症治疗研究所,加利福尼亚大学,加利福尼亚大学,旧金山,旧金山,美国,美国944112,旧金山,旧金山,CA 94143,美国9 UCSF Helen Diller家庭综合癌症中心,加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州94158,美国10马龙医疗保健中心,医疗保健中心约翰·霍普金斯大学,巴尔的摩,马里兰州,美国13号生物学系,斯坦福大学,加利福尼亚州斯坦福大学,14高级作者15这些作者同样贡献了16个铅联系 *通信 *通讯:alex.marson@gladstone.ucsf.edu(A.M。)),pritch@stanford.edu(J.K.P。)https://doi.org/10.1016/j.xgen.2024.100671https://doi.org/10.1016/j.xgen.2024.100671
2023年12月,在延长谈判之后,联合国气候变化会议(COP28)达成了一项关键协议,这表明了化石燃料时代的“终结”。近200个国家,约占全球二氧化碳(CO 2)的90%的国家,他们承认有必要从化石燃料中转移。COP28的一项重大成就包括第一个“全球股票”,这是对《巴黎协定国际气候行动》的综合审查,旨在评估实现其目标的集体进步。然而,COP28仅部分解决了一个关键问题:由于气候变化而加剧了社会经济不平等,尤其是当今的排放使下一代处于危险之中的方式。在这里,我们概述了全球快速变暖的背景,其含义以及代际不平等和区域差异的加剧。更重要的是,我们讨论了减少社会经济差异的几种方法,包括改善税收制度,消除裁剪的农田的振兴以及更灵活的可再生能源基础设施的发展。
预测靶基因的扰动如何影响其他基因的表达是理解细胞生物学的关键组成部分。这是一个具有挑战性的预测问题,因为该模型必须捕获复杂的基因关系,并且输出是高维且稀疏的。为了应对这一挑战,我们提出了一种简单的方法,一种利用Genept嵌入的方法,它是使用单个基因的文本描述来得出的,以预测通过正规回归模型扰动引起的基因表达变化。在多种细胞类型和五个不同审慎的基因嵌入模型的八个CRISPR扰动屏幕数据集上进行了基准测试,Genepert始终胜过所有在Pearson相关和均值平方误差指标中测量的所有最新预测模型。即使使用有限的培训数据,我们的模型也有效地概括了,为预测扰动结果提供了可扩展的解决方案。这些发现强调了信息性基因嵌入的力量,以预测硅中看不见的遗传扰动实验的结果。genepert可从https://github.com/ zou-group/genepert获得。