传统的储存器计算 (RC) 是一种浅层循环神经网络 (RNN),具有固定的高维隐藏动态和一个可训练的输出层。它具有只需要有限训练的优点,这对于训练数据极其有限且获取成本高昂的某些应用至关重要。在本文中,我们考虑了两种将浅层架构扩展为深度 RC 的方法,以在不牺牲潜在优势的情况下提高性能:(1)将输出层扩展为三层结构,促进对神经元状态的联合时频处理;(2)顺序堆叠 RC 以形成深度神经网络。利用深度 RC 的新结构,我们重新设计了具有正交频分复用 (MIMO-OFDM) 信号的多输入多输出物理层接收器,因为 MIMO-OFDM 是第五代 (5G) 蜂窝网络的关键支持技术。 RNN 动态特性与 MIMO-OFDM 信号时频结构的结合,使深度 RC 能够处理非线性 MIMO-OFDM 信道中的各种干扰,从而实现比现有技术更高的性能。同时,与依赖大量训练的深度前馈神经网络不同,我们引入的深度 RC 框架可以使用与 5G 系统中基于传统模型的方法相同数量的导频提供不错的泛化性能。数值实验表明,基于深度 RC 的接收器可以提供更快的学习收敛,并有效减轻未知的非线性射频 (RF) 失真,与浅层 RC 结构相比,误码率 (BER) 提高了 20%。
(2) 在 AC 或 RC 退役或解除职务后 3 个月内重新入伍。在 AC 或 RC 退役或解除职务后 3 个日历月的同一天重新入伍的成员将被视为“3 个月内”重新入伍。在入伍期满或延长入伍期满前 3 个月或更短时间内重新入伍的水手将被视为已完成当前合同。例如:12 月 7 日 AC 或 RC 退役或解除职务的成员可以在 3 月 7 日之前的任何一天重新入伍并保持连续服务。(3) 在 AC 或 RC 退役或解除职务后 6 个月内重新入伍,前提是该成员在最新的 DD-214 现役解除或解除证书第 27 栏中被归类为“RE-R1”。从 AC 或 RC 退役或解职之日起 6 个日历月后的同一天重新入伍的成员,即为“6 个月内”重新入伍。有关条件和奖金权利,请参阅参考资料 (a)。(4)“入伍(在连续服务条件下)。”适用于 AC 成员入伍并加入 RC,或 RC 成员在义务服务期满(EOS)后或 EOS 之前的任何时间在上述“连续服务”时间范围内入伍。注意:从 AC 退役后入伍或重新加入 RC 不会损害成员在 RC 连续服务条件下重新入伍的权利,前提是水手符合所有资格要求。b.不当重新入伍 - 未经指挥官 (CO) 或负责官员 (OIC) 书面授权而重新入伍。有关更多指导,请参阅第 19 段。c. 可信赖服务 - 用于计算退休资格的武装部队服务年限。(1) 正常退休(现役退休)的可信赖服务是根据服役天数减去损失时间计算的。即使在连续服役条件下,任何服务中断(如上所述)也不
摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
2024 年 3 月 8 日 — 使用廉价 RC 元件的片上振荡器。(RC:±10%)。• 自动前导码生成。• 用于数据输入的施密特触发器。• 低待机电流。
简介:深入描述行星风化层对于推进行星科学研究、空间工程和未来表面任务的成功至关重要 [1]。了解原位风化层的环境和地质力学特性,包括其强度、变形行为和水/冰含量,对于验证探测车操作、了解地质历史和确定资源可用性至关重要。为此,土壤特性评估阻力和热分析 (SPARTA) 工具包 [1] 已被开发为一套多功能、低质量、低功耗的传感器套件,它将以前所未有的空间分辨率表征月球和行星风化层的物理和化学特性 [1]。它是一个多功能系统,可以部署在自动或载人探测车和着陆器上,也可以作为宇航员在包括月球和火星 [1] 在内的不同行星表面探索过程中的手持工具使用。 SPARTA 由四个子系统组成,即锥体穿透测试仪 (CPT)、叶片剪切测试仪 (VST)、热导率探针 (TCP) 和介电光谱探针 (DSP),旨在提供详细的地下分析,以确定月球风化层的物理特性并确定冰的浓度和空间分布。SPARTA CPT 能够表征地下地层和月球风化层的承载强度。在这里,我们旨在使用 SPARTA CPT 进行测量,以建立锥体穿透阻力与穿透材料密度之间的定量关系 [2]。
南部公司服务(SOCO)是南部公司平衡机构和东南部电力管理局(SEPA)平衡机构的RC,以及以下传输所有者:乔治亚州传输公司(GTC),乔治亚州传输公司(GTC),乔治亚市市政电动机,乔治亚州乔治市(MEA),南方电力公司(SEPC),APA(SEPA),SEPA,SEPA,SEPA,SEPA,SEPA,SEPA) Power(MPC)和佐治亚力量(GPC)。东南RC区域由NERC注册表中列出的平衡当局的计量界限内的传输和发电设施组成,并在东南可靠性协调员可靠性计划中引用。东南RC已与邻近的RC达成协议,以促进满足可靠性协调员的NERC要求所需的协调和通信。
摘要:已经提出了片上微区谐振器(MRR)来构建时间延迟的储层计算(RC),该计算提供了有希望的配置,可用于具有高扩展性,高密度计算和易于制造的计算。但是,单个MRR不足以为具有多种内存要求的计算任务提供足够的内存。MRR通过光学反馈波导满足了巨大的记忆需求,但以其较大的足迹为代价。在结构中,超长的光学反馈波导实质上限制了可扩展的光子RC集成设计。在本文中,提出了一个时间删除的RC,该RC是通过利用基于硅的非线性MRR与一系列线性MRRS结合使用的。这些线性MRR具有高质量的因素,为整个系统提供了足够的存储能力。我们在具有多种内存要求的三个经典任务上进行定量分析和评估拟议的RC结构的性能,即Narma 10,Mackey-Glass和Santa Fe Chaiotial Chaotion Chaoticerseries的预测任务。在处理NARMA 10任务时,提出的系统具有超长的基于波导的系统,具有与MRR相当的性能,这需要大量的内存能力。尽管如此,与具有基于光反馈波导的系统的MRR中超长的反馈波导相比,这些线性MRR的总长度明显小于三个数量级。这种结构的紧凑性对光子RC的可伸缩性和无缝整合具有重要意义。
摘要 :青贮复水玉米粒 (RC) 已被用于提高营养价值和促进农场储存。本研究评估了壳聚糖和乳酸微生物接种剂对青贮复水玉米微生物学、发酵特性和损失、化学成分、体外降解和有氧稳定性的影响。采用完全随机设计,使用了 40 个实验筒仓来评估以下处理:1) 对照 (CON):不含添加剂的 RC 青贮饲料;2) 壳聚糖 (CHI):含 6 g/kg 干物质 (DM) 壳聚糖的 RC 青贮饲料;3) 布赫纳乳杆菌 (LB):每克鲜重用 5 × 10 5 个 L. buchneri 菌落形成单位 (CFU) 的 RC 青贮饲料; 4) 植物乳杆菌和乳酸干酪杆菌 (LPPA):RC 每克鲜重青贮饲料中接种 1.6 × 10 5 个植物乳杆菌和 1.6 × 10 5 个乳酸干酪杆菌。添加剂增加了乳酸菌数量以及乳酸和丙酸浓度,减少了霉菌和酵母数量以及气体和发酵损失,提高了干物质回收率。与接种微生物的青贮饲料相比,CHI 青贮饲料的 pH 值、氨氮浓度和发酵损失均较低,而乙酸浓度较高。此外,CHI 和 LB 降低了青贮饲料有氧暴露后的 pH 值和温度。虽然各种处理对 RC 的营养价值影响不大,但 CHI 提高了青贮饲料的有氧稳定性,减少了发酵损失。 关键词 : 发酵概况、仁粒青贮饲料、乳酸菌、L. buchneri。